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ABSTRACT

This paper proposes a non-rigid point set registration method

called Structure-Guided Coherent Point Drift (SGCPD). The

key idea of our method is to utilize structural information and

combine the global and local point registrations together to

improve the original Coherent Point Drift (CPD) algorithm.

Specifically, given two point sets, we first align them using

the CPD method with Localized Operator (CPDLO). Then

we divide the target point set into several subsets and apply

CPDLO to each subset. Finally, we implement the above two

procedures until convergence. In this manner, more detailed

information can be well exploited and thus higher registration

accuracy can be achieved. Experimental results demonstrate

that our method outperforms the original CPD approach on

both point registration accuracy and skeleton decomposition

accuracy for Chinese characters.

Index Terms— Point set registration, Coherent Point

Drift, Chinese character skeleton decomposition

1. INTRODUCTION

Point set registration is the process of finding a spatial trans-

formation that aligns two point sets. Typically, the trans-

formed point set is called model point set while the other

one is named target point set. Point set registration plays

an important role in pattern recognition and image process-

ing. It is also a crucial step for many applications such as

fingerprint recognition, motion tracking and computer-aided

surgery [1, 2]. One tough task among them is the skeleton

point registration of Chinese characters, which can be widely

used in stroke extraction, shape morphing, etc [3, 4]. Current

point set registration algorithms are not effective enough for

the skeleton point registration of Chinese characters. That is

mainly because existing methods all treat the task as a normal

point set registration problem without taking the special prop-

erties of Chinese characters into account. One most important

property of Chinese characters is their structural information.

Here, the structural information denotes the subset division of

model point set. It is a widespread feature for both 2D and 3D

point sets, which is demonstrated in Fig. 1.

*Zhouhui Lian is the corresponding author.
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Fig. 1. Demonstration of structural information of model

point set in 2D (a) and 3D (b), respectively.

There exists a large body of research work on point set

registration. A well-known classic method is the Iterated

Closest Point (ICP) algorithm [5, 6], which iteratively up-

dates the correspondence until reaching the local minimum.

The Thin-Plate Spline Robust Point Matching (TPS-RPM)

[7, 8] was proposed in order to solve ICP’s occlusion prob-

lem. One state-of-the-art approach is the Coherent Point

Drift (CPD) [9] algorithm, which employs Gaussian Radial

Basis Functions (GRBF) instead of TPS to get better reg-

istration results for high-dimensional point sets. Recently,

several variants of CPD have been proposed to meet specific

requirements. Hu et al. [10] added landmark information

in the registration, while [11] and [12] focused on automatic

parameter selection and outlier modeling.

Essentially, CPD and its existing variants are all global

registration algorithms and thus have the drawback of neglect-

ing local detailed features. In this paper, we propose a nov-

el method called Structure-Guided Coherent Point Drift (S-

GCPD), which utilizes structural information and combines

the global and local point registrations together to improve the

original CPD algorithm. Experimental results demonstrate

the effectiveness and superiority of our method in applications

of non-rigid point set registration for Chinese characters.

2. METHOD DESCRIPTION

2.1. Mathematical Background

The CPD framework [9] is a probabilistic method which con-

siders the point registration problem as a probability estima-
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tion problem. The model points represent the Gaussian Mix-

ture Model (GMM) centroids, while the target points repre-

sent data points. The Expectation Maximization (EM) [13]

algorithm is employed to maximize the likelihood function

and optimally align the model point set to the target point set.

Let XN×D = (x1, ...,xN )T be the target point set with

N points and D dimensions, and YM×D = (y1, ...,yM )T

be the GMM centroids set with M points. Thus, the GMM

probability density function is defined as

p(x) = ω
1

N
+ (1− ω)

M
∑

m=1

1

M
p(x|m), (1)

in which the uniform distribution p(x|M + 1) = 1
N

with the

weight of ω accounts for noise and outliers. Each Gaussian

distribution has equal membership probability 1
M

and takes

the form p(x|m) = 1
(2πσ2)D/2 exp

−
‖x−ym‖2

2σ2 , where σ2 is the

equal isotropic covariances of Gaussian distribution.

Then the model points’ locations can be re-parameterized

by a set of parameters θ, which can be estimated by minimiz-

ing the following negative log-likelihood function

E(θ, σ2) = −
N
∑

n=1

log
M+1
∑

m=1

1

M
p(x|m). (2)

The EM algorithm can be used to determine θ and σ in (2) (see

more details in Algorithm 1). The CPD algorithm iteratively

implements E and M steps until convergence.

Yet another problem is how to define non-rigid transfor-

mation for model point set. According to the Tikhonov reg-

ularization framework [14], the transformation is defined as

T (Y, v) = Y + v(Y), where v is a displacement function.

Based on [9], the optimal displacement function v(z) follows

the form

v(z) =
M
∑

m=1

wmG(z,ym) + ψ(z), (3)

where the coefficients wm can be evaluated by the following

formula at ym points

(G+ λσ2d(P1−1)W = d(P1−1)PX−Y, (4)

where P is the correspondence matrix calculated in E step.

According to the Motion Coherence Theory (MCT) [15], ma-

trix GM×M can be calculated by

gij = G(yi,yj) = e−
1
2‖

yi−yj
β ‖2

, (5)

which represents the affinity among points.

2.2. Structure-Guided CPD

As shown in Fig. 2, the proposed SGCPD algorithm is an it-

erative procedure which consists of the following three sub-

steps: CPDLO, target point set decomposition and localized

Fig. 2. Overview of our method.

CPDLO. In this section, we first give a formal description

for the structural information and describe each sub-step e-

laborately. Then we summarize the SGCPD algorithm and

provide a discussion.

In SGCPD, the target point set X and model point set

Y are the same as those in the original CPD. The additional

structural information is that the model point set can be divid-

ed into K subsets, namely YM×D =
⋃K

i=1 Y
i
Mi×D, where

M =
∑K

i=1Mi. We introduce the structure vector to describe

structural information. Here, the structure vector is defined as

sY = {sY1 , . . . , s
Y

M} where sYi = k when yi ∈ Yk.

In MCT [15], the velocity field is defined everywhere in

the image, which causes a problem that the registration ac-

curacy of some points may be unsatisfactory since the move-

ment of a point is influenced by all other points. In fact, a

point’s movement should be mainly influenced by the points

that are in the same subset. To solve this problem, we define a

velocity field for each model subset and introduce a parameter

ξ to represent the impact of other velocity fields. We imple-

ment the above ideas by multiplying a localized operator to

affinity matrix G. The localized operator LM×M is defined

as

lij =

{

1, if sYi = sYj

ξ, otherwise
, (6)

and it can be easily calculated using the structure vector sY.

Then the localized affinity matrix G can be calculated by

gij = G(yi,yj) = lije
− 1

2‖
yi−yj

β ‖2

. (7)

Algorithm 1 shows the pseudo code of our CPDLO algorith-

m. Note that the only difference between CPDLO and the

original CPD algorithm is the calculation of G.

After implementing CPDLO, we get the correspondence

matrix PN×M , in which pij denotes the correspondence

probability of the ith target point and the jth model point.

Given a target point xi, we denote its correspondence model

point as ycxi
, in which

cxi
= argmax

m∈[1,M ]

{pim}. (8)
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Algorithm 1 CPDLO

1: W← 0; σ2 ← 1
DNM

∑M,N

m,n=1 ‖ xn − ym ‖
2;

2: G(yi,yj)← lije
− 1

2‖
yi−yj

β ‖2

;

3: while l > lthr and σ > σthr do

4: pmn ←
exp− 1

2
‖
xn−(ym+Gm·W)

σ
‖2

∑M
k=1 exp− 1

2
‖
xn−(yk+Gk·W)

σ
‖2 +(2πσ2)D/2 ω

1−ω
M
N

;

5: Solve (G+ λσ2d(P1)−1)W = d(P1)−1PX−Y;

6: T← Y +G ·W;

7: NP ← 1TP1;

8: σ2 ← 1
NPD

(tr(XT d(PT1)X) − 2tr((PX)TT) +

tr(TT d(P1)T));
9: end while

10: return T,P;

Now for the target point set X, the structure vector sX takes

the form sXi = sYcxi
. Thus, the target point set can be divided

into K subsets.

Now we get a one-to-one mapping from target point sub-

sets to model point subsets. Current state is a globally optimal

state since the global negative log-likelihood function is min-

imized by the model points. However for each target-model

subset pair, current model points’ spatial distribution might

not be optimal. Hence, our key observation for the next step

is to reorganize model points in each subset to make them lo-

cally optimal. To achieve this, we apply CPDLO to each pair

of subsets, which is called localized CPDLO.

After localized CPDLO, all subset pairs are aligned. Note

that the localized CPDLO breaks the globally optimal state of

model points. Thus, it is essential to conduct a global CPDLO

to the entire model points, which can again make model point

set globally optimized. By combining CPDLO, target point

set decomposition and localized CPDLO together, we can

get an integrated iterative procedure, which is called SGCPD

algorithm. When the SGCPD algorithm is converged, the

model points are in a both globally and locally optimal state.

Compared with the globally optimal state of the original CPD

method, the registration accuracy can be markedly improved.

Algorithm 2 shows the pseudo code for SGCPD.

3. EXPERIMENTAL RESULTS

In this section, we present experimental results on point set

registration and character skeleton decomposition applica-

tion. Due to the page limit only a small part of results are

shown here, the full experimental results can be found at

www.github.com/sunhao2014/SGCPD/.

3.1. Results on Point Set Registration

We carried out experiments on five Chinese font libraries (i.e.,

Kaiti (KT), Hanyi Kaiti (HK), Fongsong (FS), Hard-tripped

Algorithm 2 SGCPD

Input:

Target point set X, model point set Y, model structure

vector sY, noise rate ω, regularization parameters λ and

β, localized weight ξ, iteration threshold ithr, likelihood

threshold lthr, σthreshold σthr.

Output:

Aligned point set T, correspondence matrix P.

1: iter ← 0;

2: Compute localized operator L using sY and ξ.

3: while iter < ithr do

4: {T,P} ← CPDLO (X,Y,L, ω, λ, β, lthr, σthr);

5: for i ∈ {1, . . . , N} do

6: pmax← −∞;

7: for j ∈ {1, . . . ,M} do

8: if pij > pmax then

9: pmax← pij ; cxi
← j; sXi ← sYcxi

;

10: end if

11: end for

12: XsXi ← XsXi
⋃

xi;

13: end for

14: for k ∈ {1, . . . ,K} do

15: Compute Lk for the kth subset.

16: CPDLO (Xk,Yk,Lk, ω, λ, β, lthr, σthr);

17: end for

18: iter ← iter + 1;

19: end while

20: return T,P;

Kaiti (HTK) and Founder Jinglei (FJ)). We chose KT as mod-

el font and the other four as target fonts. 100 characters were

randomly selected from GB2312 Chinese character set, and

the selected 100 characters’ skeleton point sets were extract-

ed using [16] for model font and each target font. Note that

in order to test our method’s robustness, we chose four tar-

get fonts quite different in style. HK and FS are printed fonts

whose structures are relatively close to KT while HTK and

FJ are handwriting fonts whose structures are quite different

from KT.

To evaluate the accuracy of point set registration, we de-

fine Average Assignment Probability (AAP) asAAP (X,T) =
∑N

i=1 max16j6M{pij}

N
. Fig. 3 provides the comparison of Chi-

nese character skeleton point set registration between the

original CPD and our method. We observe that our method

outperforms the original CPD method in terms of registration

accuracy for both printed and handwriting fonts.

3.2. Results on Character Skeleton Decomposition

After point set registration, the target points can be divided

into several subsets, which make up the skeleton decomposi-

tion results. Since character skeleton decomposition is often

used for stroke decomposition [3, 4], the false match of some
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Fig. 3. Point set registration results. (a) shows registration results for the Chinese character “Deng” in four different styles. (b)

is the statistical box plot for 4 data sets. Each set of box bars indicate the maximum, 75th percentile, median, 25th percentile

and minimum AAPs for each data set with CPD in red and SGCPD in blue.
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Fig. 4. Chinese character skeleton decomposition results. (a) shows the decomposition results for the Chinese character “Deng”

in four different styles. (b) is the statistical box plot for four data sets, and each person has a specific color.

crucial points would lead to serious damages on the whole

stroke structure. Thus it is improper to simply use the error

rate to evaluate decomposition accuracy. We designed a scor-

ing system and got assessment results from five participants.

There are four levels in the scoring system, which are sig-

nificant optimization, slight optimization, slight deterioration

and significant deterioration, with the score of 0.5, 0.2, -0.2,

-0.5 respectively. For each character in data sets, each partici-

pant estimated the differences between decomposition results

of the original CPD and SGCPD, and assigned a level to each

difference. If the score summation is positive, we could con-

clude that our method performs better than CPD. Fig. 4 shows

final results for character skeleton decomposition, which in-

dicates that our method can effectively improve the skeleton

decomposition accuracy for Chinese characters.

4. CONCLUSION

In this paper, we introduce a structure-guided non-rigid point

set registration algorithm. We take advantage of the struc-

tural information of model point set by adding the localized

operator and combining global and local point set registration

together. Besides the Chinese character skeleton decomposi-

tion, our method can have many other applications. Taking

the hot research topic of 3D model decomposition [17] as an

example, the proposed method which utilizes structural in-

formation can deal with the problem efficiently. Experimen-

tal results demonstrate that the proposed approach performs

better than the original CPD method in terms of registration

accuracy and character skeleton decomposition accuracy.
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