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ABSTRACT 

 

This paper proposes a cloud-based distributed image coding 

scheme (Cloud-DIC) to exploit the strong correlations with 

external partial-duplicate images in the cloud. It features both 

high coding efficiency and low encoder complexity, which 

makes it suitable for photo sharing on mobile devices. To get 

the side information in the cloud, a thumbnail of the current 

image is transmitted to retrieve highly correlated images and 

reconstruct through geometrical registration and adaptive 

patched-based stitching.  The current image is then 

compressed by a transform-domain syndrome coding, 

bitplane by bitplane. Once a bitplane is received, the decoded 

high-quality image is further used to refine the side 

information in the cloud, which will benefit the coding of 

following bitplanes and the reconstruction. Experimental 

results on a landmark image database show that it can largely 

enhance the coding efficiency both subjectively and 

objectively with up to 5 dB gains and 58% bits saving over 

JPEG.  

Index Terms— cloud-based coding, distributed image 

coding, local feature descriptors 

 

1. INTRODUCTION 

 

With the explosion of multimedia on the web, when you 

would like to share one image with your friends, you can 

easily find some similar images, even of the same scene for 

landmark images, through sophisticated image retrieval 

techniques. This brings great opportunities to largely enhance 

the image coding efficiency by exploiting the strong 

correlations with external images. However, conventional 

image coding schemes, e.g. JPEG [1] and JPEG 2000 [2], 

based on transforms and predictions cannot exploit such 

correlations. To upload a high-resolution image, it will 

consume a lot of network bandwidths to get a high-quality 

image.  It is desired to develop an efficient coding scheme 

that can make full use of external images. 

Recent research on image processing using a large-scale 

image database has emerged in various applications, such as 

composition, reconstruction, super resolution and 

compression [3]-[7]. They tend to use local feature 

descriptors to retrieve and align correlated images and show 

some promising results. In compression, Yue et al. proposed 

to transmit local SIFT (Scale Invariant Feature Transform) 

descriptors instead of pixel values to better exploit 

correlations with images in the cloud [6]. With SIFT 

matching between the current image and correlated ones in 

the cloud, a geometrical registration is performed at the patch 

level to correct the geometrical distortions between them, 

which come from different camera viewpoints, focal lengths 

and scales. A down-sampled image is also transmitted to 

verify external patches and guide the patch stitching.  

However, most of these schemes using local descriptors 

are inverse problems. One cannot guarantee that patches 

found from external images match the one from the current 

image without transmitting it. For example, when new objects 

come out or when occlusion occurs, false or no patches may 

be stitched to reconstruct the image, leading to a locally false 

or smoothed reconstruction. What’s more, if there are locally 

varying illumination differences between the current image 

and the correlated ones retrieved from the cloud, even if a 

patch corresponding to exactly the same object at the same 

viewpoints and scale after geometrical registration can be 

found, the reconstructed image might be visually pleasing, 

but different from the original image. That is, the fidelity of 

the reconstructed image cannot be guaranteed. 

In this paper, we propose a cloud-based distributed 

image coding scheme (Cloud-DIC) to solve this problem. 

Since distortions come only from quantization in distributed 

source coding (DSC) if a correct decoding is achieved, a 

high-fidelity reconstruction can be ensured [8]. By shifting 

computations from the encoder to the decoder, the proposed 

scheme is suitable for photo sharing on mobile devices. In 

Cloud-DIC, a thumbnail is transmitted to get the side 

information (SI) in the cloud using correlated images. The 

encoder then transmits syndrome bits bitplane by bitplane to 

correct the difference between the current image and the side 

information in the cloud, where the compression ratio is 

decided by the correlation between them. With a better 

reconstruction after decoding one bitplane, a successive 

refinement is performed in the cloud to get a better side 

information and a correspondingly better reconstruction.  

The rest of this paper is organized as follows. Section 2 

gives an overview of the proposed scheme. Section 3 explains 

it in detail. Experiments results are presented in Section 4. 

Section 5 concludes this paper. 

*This work was done when X. Song was with Microsoft 

Research Asia as an intern. 
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Fig. 1 Framework of the proposed scheme. 

 

2. OVERVIEW OF THE PROPOSED SCHEME 

 

The flowchart of the proposed scheme is depicted in 

Fig. 1. It mainly consists of three parts: side information 

generation using the compressed thumbnail, distributed 

encoding and decoding, and successive refinement 

between the two parts.  

First, to get the side information from external images 

in the cloud, a thumbnail of the input image is compressed 

by conventional image coding. After decoding, it is used to 

reconstruct the current image similar to the super resolution 

approach in [7]. The processes include local SIFT 

descriptors extraction from the up-sampled thumbnail, 

SIFT-based matching, geometrical registration to 

compensate for geometric differences such as camera 

viewpoints and focal length, and the local matching and 

blending to locally align and stitch patches. After getting 

the reconstruction, a discrete cosine transform (DCT) is 

performed on the reconstruction to get the side information 

for distributed decoding. 

In distributed coding, the syndrome-based coding 

using Low-Density Parity-Check Accumulate (LDPCA) 

codes is adopted in Cloud-DIC [9][10]. The input image is 

decorrelated by DCT and split into bitplanes. Each bitplane 

is sent to the LDPCA coder from the most significant to the 

least significant bitplane for syndrome encoding. For each 

bitplane, the encoder transmits a subset of the syndrome 

bits to the decoder on request. Except the syndrome bits, 

Cyclic redundancy check (CRC) bits of each bitplane are 

also sent to the decoder for validation of a correct decoding. 

After syndrome decoding of all received bitplanes, a 

reconstruction in frequency domain is obtained by an 

expectation-based reconstruction. After inverse DCT, the 

image is finally reconstructed. 

At the syndrome decoding stage, once a bitplane is 

received and decoded, a reconstruction can be obtained 

which is better than the thumbnail. For better alignment 

between the current image and the correlated ones, the side 

information is further refined using the new reconstruction 

for registration and patch matching instead of the 

thumbnail. The refined side information can in turn lead to 

better reconstruction and is used to decode the next 

bitplane. The process continues until all received bitplanes 

are decoded.  

 

3. THE PROPOSED SCHEME 

 

3.1. Thumbnail Compression 

 

The thumbnail is generated by downsampling from the 

original image and compressed by the conventional JPEG 

image coding. Larger thumbnails lead to better side 

information quality but more bits to transmit. Here we use 

bicubic downsampling with a ratio of 1:64. To ensure a 

good quality, the thumbnail is compressed by JPEG at 

quality 90. 

 

3.2. Side Information Generation 

 

At the decoder, the thumbnail is decoded to get the SI 

in the cloud for the DSC module. The SI generation process 

with the decoded thumbnail is similar to the super 

resolution (SR) approach in [7]. First, local SIFT 

descriptors are extracted from the up-sampled thumbnail, 

which are used to retrieve correlated images in the cloud. 

Since different images may be captured at different camera 

viewpoints and focal lengths, a 3D geometrical registration 

is performed between the retrieved images and the current 

one using matched SIFT pairs. After that, an adaptive 

patch-based matching is performed on thumbnails to 

locally adjust the 2D position for further alignment. Unlike 

[7] where the alignment is performed at the integer pixel 

precision, a ¼ pixel precision is used in the Cloud-DIC for 

better alignment. Finally, a blending process is performed 

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20144803



to stitch the high-frequency details of patches from the 

aligned images onto the up-sampled thumbnail and get the 

reconstruction for the current image. After DCT, it is used 

as the side information for syndrome decoding. 

 

3.3. Transform-Domain Distributed Coding 

 

To exploit the correlations between the current image 

and the SI, the transform-domain syndrome-based coding 

similar to that in [10] is adopted in the Cloud-DIC. One 

difference is that successive syndrome-based coding is 

employed in our scheme. At the encoder, the input image 

is first decorrelated by a 2D DCT and split into bitplanes. 

The DCT size is set to 8x8 in our implementation. Each 

bitplane is then sent to the LDPCA encoder from the most 

significant to the least significant bits to generate syndrome 

bits to be stored in the buffer. In addition, CRC bits of the 

current bitplane are stored in the buffer to ensure the 

correctness of decoding. The buffer transmits a subset of 

these syndrome bits with CRC to the decoder upon request. 

At the decoder, syndrome decoding is first performed 

to decode each bitplane. We assume a Laplacian model for 

the correlation noise of each frequency between the 

original image and the SI. To estimate the model parameter, 

multiple images are offline reconstructed using a large 

database and statistics are estimated to get a fixed model 

for all test images. After decoding one bitplane, a 

reconstruction can be obtained by calculating the 

expectation given the quantization interval 𝒒𝒊 and the SI, 

i.e. 

𝒙𝒊 = 𝐸(𝒙𝒊|𝒚𝒊, 𝒒𝒊),        (1) 

where 𝒙𝒊 and 𝒚𝒊 are the i-th frequency of the input image 

and SI, respectively. After inverse DCT, the image is 

finally reconstructed. 

 

3.4. Refinement between SI and DSC Reconstruction 

 

One of the biggest challenges in reconstructing an image 

using correlated images is the alignment between them. 

Although the SIFT-based approach can be invariant to 

scale and rotations, its registration accuracy is 

questionable. The thumbnail somewhat improves the 

registration accuracy by removing some false patches and 

providing a local alignment, but the lack of high-frequency 

cannot make an accurate alignment. In Cloud-DIC, a better 

alignment can be achieved by using the received bitplanes. 

Once a bitplane is decoded, a new reconstruction superior 

to the thumbnail is obtained, which can be used to refine 

the SI. 

Let 𝒙 denote the reconstruction in spatial domain after 

decoding one bitplane, whose quality is better than the up-

sampled thumbnail 𝒙𝒍. 𝒙 is used to refine the SI by another 

reconstruction process in the cloud using external images 

similar to that in Sec. 3.2. With more details than the 

thumbnail, more SIFT descriptors can be extracted from 𝒙, 

leading to a more stable geometrical registration. Unlike 

Sec. 3.2 where the matching is performed on thumbnails 

only, the local patch-based matching is performed in a 

residue domain with 𝒙 to compensate for local illuminance 

differences. Let 𝒓𝒍 denote the up-sampled thumbnail of one 

registered correlated image 𝒓  with the same down-

sampling ratio as 𝒙𝒍. The cost of two patches 𝑃 and 𝑄 on 

the current image 𝒙 and 𝒓 is given by 

𝐷(𝑃, 𝑄) = ‖(𝑃𝒙̂ − 𝑃𝒙𝒍) − (𝑄𝒓 − 𝑄𝒓𝒍
)‖

2
,        (2) 

where 𝑃𝒙̂  and 𝑃𝒙𝒍  are corresponding patches on 𝒙 and 𝒙𝒍 

respectively. 𝑄𝒓  and 𝑄𝒓𝒍
 are corresponding patches on 𝒓 

and 𝒓𝒍  respectively. Given the matched patch 𝑄∗  with a 

minimum cost by Eq. (2), the reconstructed high-resolution 

patch for 𝑃 is  

𝑃𝒙
∗ = 𝑃𝒙𝒍 + 𝑄𝒓

∗ − 𝑄𝒓𝒍
∗ ,   (3) 

where 𝑄𝒓
∗ and 𝑄𝒓𝒍

∗  are corresponding matched patches on 𝒓 

and 𝒓𝒍 respectively.  

On the other hand, with a better SI 𝒚′ , the 

reconstruction can in turn be refined by  

𝒙𝒊
′ = 𝐸(𝒙𝒊|𝒚𝒊

′, 𝒒𝒊),        (4) 

where 𝒙𝒊
′

and 𝒚𝒊
′  are the i-th frequency of the 

reconstruction and 𝒚′, respectively. We can see that there 

is an iterative refinement process between the 

reconstruction in syndrome decoding and the side 

information, when a bitplane is decoded. Our experiment 

shows that one back-and-forth iteration is enough. The 

refined side information 𝒚′  will also help the coding of 

following bitplanes. 

 

4. EXPERIMENTAL RESULTS 

 

Image 1 Image 2 Image 3  
Fig.2 Test images. 

 

To evaluate the performance of the proposed scheme, 

we build a database by crawling landmark images from 

Flickr, whose width or height is larger than 1024. There are 

in total 535,520 images in the database. Three images listed 

in Fig. 2 are used for evaluation in this experiment, which 

are retrieved using the keywords, summer palace in China, 

Kiyomizu Temple in Japan and Flinder street station in 

Melbourne, respectively. The test images are excluded 

from the dataset. At most top four correlated images are 

used for each test image in the reconstruction, as shown in 

[11]. We can see that there are differences in camera 

viewpoints, focal length and illuminations between the test 

images and the correlated ones. 
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     (a)                                                                   (b)                                                                       (c) 

Fig.3 RD performance comparison. 

 

(g) (j)(h) (i)(f)

(b) (e)(c) (d)(a)

Fig.4 Visual quality comparison. (a) Image 2. (b) Cropped regions of image 2. (c) SR from compressed thumbnails [7]. (Rate: 4.99KB, 

PSNR: 28.32dB). (d) JPEG. (Rate: 33.12KB, PSNR: 30.45dB). (e) Proposed scheme. (Rate: 33.16KB, PSNR: 35.53dB). (f) Image 3. (g) 

Cropped regions of image 3. (h) SR from compressed thumbnails [7]. (Rate: 5.35KB, PSNR: 27.79dB). (i) JPEG. (Rate: 36.04KB, PSNR: 

30.11dB). (j) Proposed scheme. (Rate: 36.05KB, PSNR: 34.19dB).  

 

The RD performance of the Cloud-DIC is shown in 

Fig. 3. Two schemes are used for comparison, which are 

JPEG and one pioneering cloud-based image coding, Yue’s 

scheme in [6] by vision-based approaches. In Yue’s 

scheme, the thumbnail downsampling ratio is 1:64 and it is 

compressed by HEVC intra coding [12]. Only PSNR of the 

luminance component is shown here. We can see that by 

exploiting correlations with external images, the Cloud-

DIC largely enhances the coding efficiency with 2-5dB 

gains over JPEG and up to 58% bits saving. Compared with 

Yue’s scheme with only one RD point, Cloud-DIC 

provides different qualities at different rates. Besides, even 

at the lowest rate of Cloud-DIC by transmitting only a 

thumbnail, it shows a much better reconstruction fidelity 

over Yue’s scheme with up to 7dB gains in PSNR for better 

registration and patch stitching.  

The visual comparisons are shown in Fig. 4. The third 

column shows the result by cloud-based SR from the 

transmitted thumbnail [7]. One can observe that some parts 

are incorrectly reconstructed because SR is an inverse 

problem that cannot ensure the reconstruction fidelity. 

After transmitting some syndrome bits, those parts are 

corrected as shown in the fifth column. Compared with 

JPEG that shows severe blocking artifacts and loses details 

by quantization, the reconstruction by the proposed scheme 

looks much better at the same rate. 

As for the complexity, since computations are shifted 

from the encoder to the decoder by DSC, the encoder 

complexity of the proposed Cloud-DIC is low, which 

makes it suitable for mobile devices with limited resources. 

With the powerful computing resources in the cloud, the 

high decoder complexity will not be a problem.  

 

5. CONCLUSION 
 

This paper proposes a cloud-based distributed image 

coding scheme to exploit correlations with external images. 

It can largely reduce the image upload bandwidth with a 

low encoder complexity if highly correlated images can be 

found in the cloud, which makes it suitable for mobile 

devices with limited resources. Considering that JPEG is 

the most widely used image coding scheme today, our 

scheme is based on JPEG currently. With the emergence of 

the latest HEVC standard [12], the thumbnail compression 

in Cloud-DIC can also benefit from its high coding 

efficiency.  Future work will include better source 

correlation exploitation using DWT and spatial adaptivity 

exploitation in DSC. 
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