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ABSTRACT
This paper investigates the problem of full-reference (FR) im-
age quality assessment (IQA). In general, the ideal IQA met-
ric should be effective and efficient, yet most of existing FR
IQA methods cannot reach these two targets simultaneous-
ly. Under the supposition that the human visual perception to
image quality depends on salient local distortion and global
quality degradation, we introduce a novel effective and ef-
ficient local-tuned-global (LTG) model induced IQA metric.
Extensive experiments are conducted on five publicly avail-
able subject-rated color image quality databases, including
LIVE, TID2008, CSIQ, IVC and TID2013, to evaluate and
compare our algorithm with classical and state-of-the-art FR
IQA approaches. The proposed LTG is shown to work fast
and outperform those competing methods.

Index Terms— Image quality assessment (IQA), full-
reference (FR), local-tuned-global (LTG), image gradient

1. INTRODUCTION

Image quality assessment (IQA) is an important topic in digi-
tal image processing due to its applicable instruction and opti-
mization for image/video compression [1]-[3], restoration [4],
and denoising [5]-[6]. In particular, the IQA research is in the
stage of highly booming evolution in recent years. On the
one hand, many studies were devoted to the subjective IQA
by recording real human ratings under the condition of spe-
cific image distortion types, viewing environments and inex-
perienced viewers. Several famous subject-rated image qual-
ity databases are LIVE [7], TID2008 [8], CSIQ [9], and IVC
[10]. Very lately, Ponomarenko et al. released the TID2013
[11], which is up to now the largest image quality database
consisting of totally 3000 distorted images. It is easy to find
the subjective assessment is usually a time-consuming, labo-
rious and costly task, and this makes it in most cases serve as
the testing tool for the objective assessment.

Hundreds of objective IQA metrics [12]-[27], on the oth-
er hand, have been developed so far, to automatically predic-
t the image quality via a variety of strategies, for instance,
perceptual model, natural scene statistics, saliency detection,

machine learning, and brain science. In this paper, we con-
centrate on FR IQA models, which assume that the original
and distorted images are entirely known. Mean-squared er-
ror (MSE) and its equivalent peak signal-to-noise ratio (P-
SNR) are a couple of frequently used quality measures for
images, on account of their simple definitions and clear phys-
ical meanings. Nevertheless, MSE and PSNR do not take the
relevance of neighboring image pixels into account, leading
them to poorly correlating with the human judgement of im-
age quality, i.e. mean opinion score (MOS) [28]. Some classi-
cal IQA approaches [12]-[15] were therefore proposed mainly
depending on structural information or statistic information.
They were found to have a high consistency with subjective
quality ratings for the commonly encountered natural distor-
tion categories, such as JPEG/JPEG2000 compression, Gaus-
sian blur and white noise.

Those classical IQA metrics, however, work ineffective-
ly for other distortion types, e.g. quantization noise. To this
end, these years has witnessed the emergence of a flood of
methods with more robust performance for various kinds of
distortion types. For example, feature similarity index (FSIM)
[20] and gradient similarity index (GSIM) [21] were designed
based on the fact that the human visual system (HVS) pri-
marily perceives a visual signal with low-level features, and
internal generative mechanism (IGM) [22] operates with the
segmentation of an input image into predicted and disorder-
ly areas followed by the integration of modified PSNR and
SSIM values that are calculated on those two areas with psy-
chophysical parameters provided in [13].

Notwithstanding the prosperity of existing FR IQA algo-
rithms, few of them can overcome the drawback of hardly si-
multaneously achieving effective (high prediction accuracy)
and efficient (low computational complexity) goals. In this
paper, we suppose that the HVS tends to combine sensation-
s of salient local artifacts and global quality degradation to
yield the overall prediction score. Under this supposition, we
first extract image gradient magnitude (GM) since it is high-
ly sensitive to image distortions. We then independently use
the local and global average poolings to estimate the local and
global HVS perceptions, followed by fusing them to generate
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Fig. 1. Examples of representative images from TID2013 [11] and the associated image gradient maps: (a1) original image; (b1) white noise;
(c1) Gaussian blur; (d1) JPEG compression; (e1) local block-wise distortions of different intensity; (a2)-(e2) gradient maps of (a1)-(e1).

the image quality score. In addition, the influence of chromi-
nance information on IQA performance is also considered,
and thus we employ the simple and widely used YIQ color
space [29] to convert the RGB color image before the com-
putation of the GM. Following those above steps, this paper
develops an effective and efficient local-tuned-global (LTG)
model inspired IQA algorithm.

The rest of this paper is arranged as follows. Section 2
first introduces the proposed LTG algorithm in detail. Section
3 compares our technique with classical and state-of-the-art
IQA approaches in prediction performance and implementa-
tion speed, and presents experimental results to prove the su-
periority of the LTG method. We finally conclude the whole
paper in Section 4.

2. LOCAL-TUNED-GLOBAL MODEL
INSPIRED IQA METRIC

The HVS is strongly sensitive to the GM in a visual signal,
which has been widely used in many applications of image
processing and computer vision, such as object extraction, op-
tical flow, and image segmentation. In recent years, the GM is
also found to be very useful in IQA measures [20]-[22], and
this motivates us to first extract gradient information from an
input image. In this paper, we adopt the Scharr operator [30],
which is essentially expressed by convolution masks as shown
in Fig. 2. The GM is given by
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q
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where G

h
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v

are the partial derivatives of the input im-
age along horizontal and vertical directions using the Scharr
operator. We display an original image and its distorted ver-
sions of ‘white noise’, ‘Gaussian blur’, ‘JPEG compression’
and ‘local block-wise distortions of different intensity’ in Fig.
1(a1)-(e1), and the associated GM maps in Fig. 1(a2)-(e2).
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Fig. 2. Scharr gradient operator [30].

We then adopt the frequently employed similarity mea-
sure, which has three merits of symmetry, boundedness and
unique maximum [12], to detect the difference of GM maps
of the original image x and its contaminated version y:
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where G
x

and G

y

indicate the GM of the original and distort-
ed images, and C1 is a positive constant for stability. Fig. 3
shows 1�G

m

of Fig. 1(b1)-(e1), where the brighter gray lev-
el means the lower similarity, and thus higher distortion level.
We can find that G

m

succeeds to capture the remarkable dis-
tinction between the original and distorted images.

It is natural to use the simplest global average pooling af-
ter the distortion map is detected, as defined as follows:
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where M is the total number of pixels in the image, and �
computes the mean value. Note that Fig. 1(a1) is the origi-
nal image, and Fig. 1(b1)-(e1) indicate contaminated versions
which have similar MOS values, as listed in Table 1. We cal-
culate the G

g

values of those distorted images, and tabulate
them in Table 1. It is very clear that G

g

gives different pre-
diction scores for those four distorted images. In particular,
the G

g

value of ‘local block-wise distortions of different in-
tensity’ corrupted image is noticeably different from others.
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Table 1. Predictions of various IQA metrics for Fig. 1(b1)-(e1).

MOS SSIM VIF FSIM Gg Gl

Fig. 1(b1) 3.7180 0.7951 0.3769 0.9194 0.9900 0.9992
Fig. 1(c1) 3.7838 0.9334 0.5101 0.9568 0.9954 0.9997
Fig. 1(d1) 3.5897 0.8202 0.2309 0.9027 0.9897 0.9991
Fig. 1(e1) 3.7368 0.9845 0.9697 0.9825 0.9976 0.9999

We also use three representative IQA metrics that use global
average pooling, including SSIM, VIF and FSIM, to predict
those four distorted images, and report the results in Table 1.
Similarly, these three methods encounter the same trouble.

We believe this shortage of the global average pooling is
mainly because ‘local block-wise distortions of different in-
tensity’ is a very local distortion type, in other words, the ma-
jority of distinctions between the original and distorted im-
ages are located in a few patches, e.g. the cyan and blue
blocks in Fig. 1(e1). The global average pooling works in-
effectively since it seriously decreases the influence of salient
local distortions on the image quality, and thus derives an un-
reasonable score, as listed in Table 1.

To deal with this problem, we naturally consider the lo-
cal distortion-based pooling method, which is in fact not a
new issue and has been studied to some extent during the past
several years. The intuitive idea of the local distortion-based
pooling is to emphasize high distortion regions. Some previ-
ous work has proved its effectiveness in improving IQA pre-
diction accuracy [16]-[17] and [26].

From another point of view, it is noted that human viewers
cannot directly catch the overall information when watching
an image, due to the limited sight range and processing ability
of the HVS. In general, human eyes fix some salient regions
before scanning the whole image. Those salient regions can
be roughly regarded as the areas that are largely distinct from
the surroundings. This makes those green and blue blocks in
Fig. 1(e1) extremely salient relative to other areas and easy to
attract the human visual attention at the first view. Broadly s-
peaking, the first perception (e.g. the first view of an image or
the first sound in a music) strongly affects the human judge-
ments of things. This suggests that the local distortion-based
pooling should be taken into consideration to tune the global
average pooling for higher IQA performance.

The local distortion-based pooling is therefore applied via
a simple strategy, which is defined by
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where G

s

indicates the highest s% values in G

m

, and M

s

is the pixel numbers in G

s

. We assign s as 15 in this im-
plementation. The G

l

values of those distorted images are
also evaluated and listed in Table 1. Obviously, G

l

provides
similar prediction scores for all of four distorted images in
Fig. 1, which is quite consistent with subjective MOS val-
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Fig. 3. Illustration of 1�Gm of Fig. 1(b1)-(e1). The brighter gray
level means the lower similarity and higher distortion level.

ues, and thus proves the necessity of the introduction of local
distortion-based pooling.

We further consider important chrominance information
in this paper. Before the calculation of the GM, the simple
and widely used YIQ color space [29] is adopted to transfer
an input RGB color image using
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where Y conveys the luminance information, and I and Q

contain the chrominance information. In this work, we use
Y to compute G

l

and G

g

based on Eq. (3)-(4), and use I

and Q to measure the distinction of chrominance between the
original and distorted images as follows:
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where Ix and Iy (and Qx and Qy ) represent I (Q) chromatic
channels of images x and y, and C2 is similar to C1.

Finally, the LTG is proposed to combine the above parts:

LTG(x, y) = �(G✓1
s

)

�(G✓2
m

)
· �(I✓3

m

·Q✓3
m

) (8)

where ✓1 to ✓3 (✓1 > ✓2) are model parameters. We can ap-
proximate Eq. (8) as
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where ✓

0
2 = ✓1 � ✓2 > 0. The first term indicates that, for

diverse images of the same G

g

, the more uneven distribution
of distortion levels will result in the worse quality. The second
term represents the global quality. And the last term is the
measure of difference in the chrominance information.
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Table 2. Performance evaluations (after nonlinear regression) and the database size-weighted average of the proposed LTG and eleven
competing IQA metrics on LIVE, TID2008, CSIQ, IVC, and TID2008 databases. We bold the best two performed algorithms.

LIVE TID2008 CSIQ IVC TID2013 Average
(779 images) (1700 images) (866 images) (185 images) (3000 images) (6530 images)

Algorithms PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC
PSNR 0.8723 0.8756 0.5734 0.5834 0.8000 0.8033 0.7196 0.6886 0.6787 0.6875 0.6916 0.6982
SSIM 0.9449 0.9479 0.7732 0.7749 0.8613 0.8756 0.9119 0.9017 0.7895 0.7416 0.8168 0.7972
MS-SSIM 0.9489 0.9513 0.8451 0.8542 0.8991 0.9133 0.9108 0.8978 0.8329 0.7858 0.8609 0.8434
IFC 0.9268 0.9259 0.5822 0.6286 0.8390 0.7923 0.9093 0.8990 0.7218 0.6434 0.7308 0.7003
VIF 0.9603 0.9636 0.8084 0.7491 0.9264 0.9195 0.9028 0.8963 0.7719 0.6674 0.8281 0.7639
MAD 0.9675 0.9669 0.8306 0.8340 0.9506 0.9467 0.9210 0.9142 0.8271 0.8111 0.8638 0.8566
IW-SSIM 0.9522 0.9567 0.8579 0.8559 0.9144 0.9213 0.9231 0.9125 0.7638 0.7779 0.8353 0.8424
FSIM 0.9597 0.9634 0.8738 0.8805 0.9120 0.9242 0.9376 0.9263 0.8559 0.8021 0.8827 0.8615
FSIMc 0.9613 0.9645 0.8762 0.8840 0.9192 0.9310 0.9392 0.9293 0.8768 0.8509 0.8941 0.8859
GSIM 0.9512 0.9561 0.8422 0.8504 0.8964 0.9108 0.9390 0.9292 0.8463 0.7946 0.8671 0.8476
IGM 0.9567 0.9581 0.8857 0.8901 0.9281 0.9403 0.9128 0.9025 0.8561 0.8097 0.8870 0.8683
LTG 0.9534 0.9580 0.8885 0.9056 0.9547 0.9603 0.9217 0.9128 0.8961 0.8819 0.9095 0.9084

3. EXPERIMENTAL RESULTS

A comparison will be conducted in this section, to testify the
performance of the proposed LTG with classical PSNR, S-
SIM [12], MS-SSIM [13], IFC [14], VIF [15], and state-of-
the-art MAD [18], IW-SSIM [19], FSIM [20], FSIMc [20],
GSIM [21], IGM [22]. Five publicly available color image
databases (LIVE [7], TID2008 [8], CSIQ [9], IVC [10], and
TID2013 [11]), which have at least five distortion types, are
chosen as testing beds. Referring to the suggestion given by
VQEG [31], we first map the objective predictions of those
twelve testing IQA metrics to subjective scores using nonlin-
ear regression with a five-parameter logistic function:

Quality(q) = �1

⇢
1

2
� 1

1 + e

(q��3)�2

�
+ q�4 + �5 (10)

with q being the input score and Quality(q) the mapped s-
core. The free parameters �1 to �5 are determined during the
curve fitting process.

We then employ two commonly used performance evalu-
ations, Pearson linear correlation coefficient (PLCC) and S-
pearman rank-order correlation coefficient (SROCC) to fur-
ther measure those competing FR IQA algorithms. We report
in Table 2 the performance results for each database and the
database size-weighted average. It can be seen that the pro-
posed LTG can faithfully assess image quality. Precisely, our
algorithm is superior to the entire competing IQA methods
on TID2008, CSIQ and TID2013, and is comparable to the
state of the art on LIVE and IVC. Overall, the LTG achieves
the best performance than others on average. Besides the ef-
fectiveness, we further measure the implementation speed of
those IQA approaches to compare the efficiency, as tabulat-
ed in Table 3. Clearly, our technique outperforms all testing
IQA metrics, except PSNR. An important note is that our LT-
G metric is wholly better than SSIM, which is regarded as
the benchmark IQA method and embedded into most existing

Table 3. Average implementation speed (in millisecond/image).

Metrics PSNR SSIM MS-SSIM IFC
Time 3.1223 38.298 75.736 1312.7

Metrics VIF MAD IW-SSIM FSIM
Time 1167.0 1340.3 305.60 313.80

Metrics FSIMc GSIM IGM LTG
Time 326.00 70.970 9419.5 25.313

image/video processing systems, in the effectiveness and effi-
ciency. Another important note is that the proposed metric is
built upon the simulation of the HVS, and thus is very robust
for various kinds of distortion types.

4. CONCLUSION

This paper proposes a new local-tuned-global (LTG) model
to approach the process of human visual perception to image
quality, and thereby introduces an efficient and effective LTG
inspired color IQA algorithm. The proposed metric first ex-
tracts luminance and chrominance information from the input
original and distorted RGB images. Next, we measure salient
local distortions and global quality degradation in luminance
information as well as compares the differences of chromi-
nance information, thus deriving the overall image quality s-
core. Experimental results on five publicly available subject-
rated color image quality databases (LIVE, TID2008, CSIQ,
IVC, and TID2013) are provided to confirm the effectiveness
and efficiency of the proposed LTG metric over classical and
state-of-the-art IQA approaches.
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