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ABSTRACT

Repetition extraction plays an important role in facade image anal-
ysis. In this paper, this task is handled within the graph cut based
image segmentation framework. To model the repetitions, gener-
alized translation symmetry (GTS) is introduced to enable aperiodic
repetition layouts. More importantly, GTS is explicitly formulated in
terms of matrix multiplication. That is, GTS is viewed as the product
of a repetitive pattern and two block matrices. These two block ma-
trices are employed to represent the vertical and horizontal symme-
try respectively. On this basis, repetition extraction is formulated as
a GTS constrained energy minimization problem. An alternatively
optimization algorithm based on graph cut and dynamic program-
ming is finally developed to solve the problem. Experimental results
demonstrate the validity of our method.

Index Terms— Repetition Extraction, Facade Labeling, Ex-
plicit Formulation, Image Segmentation

1. INTRODUCTION

One main task of facade image analysis [1, 2, 3, 4] is to extract the
repetitive structures, such as windows, doors and other architectural
elements. Actually, repetitive structures provide rich layout and tex-
ture information which is important in realistic building reconstruc-
tion [5, 6]. In addition, repetition extraction can assist facade image
analysis to deal with the challenges coming from appearance varia-
tions, external occlusions and changing illuminations.

In the literature, there are two mainstreams of works modeling
the repetitions: symmetry based detection [7, 8, 9] and grammar
based parsing [10, 11, 12].

Symmetry based detection models the repetitions as translation
symmetry. Previous work involved in translation symmetry detec-
tion include maximizing repetition quality [8], calculating similarity
map [13], and generating translation map [14]. However, if varying
distances exist among the repeated elements, they will be grouped
into several dissociated lattices. Moreover, none of these approaches
propose an explicit formulation for the repetitions. Recently, J. Liu
et al. proposed an elegant method which formulates facades via Kro-
necker Product [9]. Yet, this approach intrinsically makes periodic
assumption and thus cannot tackle facades with distance variations.

Grammar-based parsing applies shape grammar to interpret the
facade regularity. Shape grammar recursively splits the facade im-
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Fig. 1. Overview of our method. (a) The original image with a user-
specified bounding box. (b) Template matching result. (c) Initial
detection regularized from template matching. (d) The final result.

ages into basic shapes according to the parsing rules. Given an im-
age, the splitting parameters are inferred via Markov Chain Monte
Carlo [15], or random walk [10], or reinforcement learning [11].
However, when tested on an image several times, the results may
be inconsistent. Rank-one approximation [16, 17] viewed grammar
parsing as approximating an initial label with several rank-one ma-
trices. Yet, the rank-one model does not constrain the matrix size
and thus cannot faithfully describe the repetition property.

Our goal is to extract the repetitions given a user-specified
bounding box. The core idea is to embed the regularity into the
graph cut based image segmentation [18, 19]. The energy on the
graph includes the likelihood term and the smoothness term. To
model the regularity, we introduce a novel type of symmetry re-
ferred as generalized translation symmetry (GTS). GTS enables
varying distances between the repetitive elements. Further, GTS
is explicitly formulated via two block matrices which respectively
express the symmetry along the vertical and horizontal directions.
Constrained by GTS, the energy minimization problem is finally
constructed. To solve the problem, dynamic programming (DP) and
graph cut are alternatively utilized.

The characteristics of our method can be highlighted as follows:
(i) we explicitly and intuitively describe the repetition property via
block matrices; (ii) repetition detection and segmentation are jointly
formulated as a symmetry constrained energy minimizing problem;
(iii) the problem is alternatively optimized via DP and graph cut.

2. PROBLEM FORMULATION

In this section, GTS is introduced to model the repetitions, and is
represented via matrix multiplication. Then, repetition extraction is
formulated as a GTS constrained energy minimization problem.
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Fig. 2. A sketch for the explicit formulation of the facade label L. L can be formulated as the product of multiplying a repetitive sub-label
LX by two block matrices P and Q. P and Q are composed of alternating zero matrices and identity matrices. Specifically, for Q (P ), the
height (width) of its identity matrix equals the width (height) of LX , and the identity matrices are located at the same columns (rows) of the
repetitions. Hence, P and Q respectively represent the vertical and horizontal symmetries.

2.1. Formulating GTS via Matrix Multiplication

Real-world facades usually contain vertically and horizontally
aligned repetitions. While many methods view the regularity as
periodic translation symmetry, GTS is introduced to enable chang-
ing distances between the repetitions. For conciseness, we focus on
the single symmetry case, namely, viewing one kind of repetitions
as foreground and other parts of the facade as background.

For a rectified facade image I ∈ Rh×w, its 0-1 label L can be
formulated in terms of matrix. That is, L can be modeled via two
special block matrices whose elemental blocks are identity matrices.
Let LX ∈ Rm×n denote the 0-1 label of a repeated element. As
illustrated in Fig. 2, we have:

L = P · LX ·Q, (1)

where P and Q encode the symmetry along vertical and horizontal
directions respectively. To guarantee the repetition property, Q (P )
must obey the structured constraint: being composed of alternating
zero matrices and identity matrices along the horizontal (vertical)
direction. Let E ∈ Rn×n denote the identity matrix. Formally, the
structured constraint for Q ∈ Rn×w can be formulated as:

1. ∀i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , w}, Qij ∈ {0, 1};
2. ∀i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , w}, (2)

if Qij = 1, then Q(:, j − i+ 1 : j − i+ n) = E.

Furthermore, it should be mentioned that the structured constraint
for P is similar to that for Q.

2.2. GTS Constrained Energy Minimization Problem

Based on the above facade regularity model, we formulate repetition
extraction as a GTS constrained energy minimization problem:

min
L

U(I, L) + λ · V (I, L)

s.t. L = P · LX ·Q, (3)

and P, Q satisfy the structured constraint (2),

where the term U and the term V will be discussed later, and λ is a
positive trade-off between them. Note that optimizing P and Q sig-
nifies repetition detection, and calculating LX stands for segmenting

a repetitive pattern. Hence, repetition detection and segmentation are
jointly formulated in a unified framework.

The term U expresses the preference of each pixel to be labeled
as foreground or background. To evaluate this preference, the fore-
ground and background RGB color distributions are respectively ap-
proximated with a full-covariance Gaussian Mixture Model (GMM)
[19]. Let Li be the label of pixel i and let Ii denote the RGB color
of pixel i. The data term is defined as:

U =
∑
i

− log p(Ii|Li; θ), (4)

where p(·) is the probability density calculated according to the
GMM model, and θ is the parameters of GMMs. The parameters are
initialized with k-means. In the optimization process, the parameters
are iteratively updated.

The term V is used to enforce the smoothness of local regions
and to align the boundary of label with image edges. Let N be the
set of pairs of adjacent pixels. This term is defined as [18]:

V =
∑

(i,j)∈N

[Li 6= Lj ]

‖i− j‖ · exp(−
‖Ii − Ij‖2

2σ2
), (5)

where [·] equals 1 if Li 6= Lj and 0 otherwise, and ‖ · ‖ is the eu-
clidean norm. The constant σ2 is estimated as the average variances
over the whole image. This term adaptively imposes strong or weak
penalty for discontinuities between adjacent pixels.

3. OPTIMIZATION

The problem (3) contains four unknown variables P,Q,LX and θ.
It usually needs expensive computation to optimize over several vari-
ables simultaneously. Hence, we adopt a common alternating opti-
mization strategy, i.e., minimizing w.r.t. the four variables one at a
time. Given L = P · LX · Q, updating θ is the classic problem
which learns the parameters of a GMM via maximum likelihood es-
timation. This can be achieved by Expectation Maximization [20].

3.1. Optimizing LX by Graph Cut

Given P andQ, optimizing LX is the classic problem of labeling on
a graph. Specifically, LX can be solved via graph cut [18], imple-
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mented as follows. Let L0 ∈ Rm×n be an all-ones matrix. Denote
R = P · L0 · Q and let Ri be the i-th element of R. Given P and
Q, the unknown region (to be segmented) is TU = {i|Ri = 1}
and consist of several bounding boxes of the detected repetitive pat-
terns. The known background region is TB = {i|Ri = 0}. Let E
denote the set of pairs of pixels which are located at the same rows
and columns within different bounding boxes in TU . The constraint
L = P · LX ·Q in problem (3) is implemented as a hard constraint
on TB and E . That is, the labels on TB are enforced to be 0 and each
pair of pixels in E share the same label.

3.2. Optimizing P and Q by Dynamic Programming

Since P and Q have similar structures, the algorithm solving Q can
be directly applied to PT . Moreover, due to the special structure, Q
can be optimized by DP. Its main idea is to decompose the original
problem into a series of interrelated sub-problems and then solve the
sub-problems recursively.

Optimizing Q can be viewed as placing a left-to-right sequence
of identity matrices. Consequently, the placement of each identity
matrix is “conditionally independent” of the others given the nearest
identity matrix. Assuming that the rightmost column of the (t-1)-
th identity matrix is at the St-th (0 ≤ St ≤ w) column of Q, the
sub-problem, denoted as P(St), finds the optimal placement for the
remaining w − St columns. If the t-th identity matrix is placed and
its n-th column is at the St+1-th column ofQ, this placement results
in a new sub-problem P(St+1). Accordingly, we define Ut as the
distance from St to St+1. If no identity matrix is placed, the placing
process is finished and Ut is defined as 0. Thus, it follows:

St+1 =

{
St + Ut, n ≤ Ut ≤ w − St

w, Ut = 0
. (6)

Among these possible Ut, the optimal one can be found via enumer-
ation, which is formulated as:

Vt(St) = min
Ut∈{0,n:w−St}

{Ct(St, Ut) + Vt+1(St+1)}, (7)

where Vt(St) is the optimal cost of the sub-problem P(St), and
Ct(St, Ut) is the cost of Ut given St calculated according to (4) and
(5). This enumerative process is recursively implemented, started
from St = w and finished when St = 0. Once this recursive process
stops, the optimal Q∗ will be reconstructed via back-tracking.

There areO(w) sub-problems in the recursive process. For each
sub-problem, O(w) enumerations are evaluated, with each requiring
O(w·h) additions. With pre-computation of the cost, the complexity
optimizing Q is therefore O(w2).

3.3. Initial Detection and Convergency

A trivial initialization to the above alternating algorithm is to take
only the user-specified bounding box as foreground and then learn
GMMs. However, the foreground pixels may be too insufficient rela-
tive to the background pixels, leading to inaccurate GMMs and many
false negatives. Hence, we adopt an initial detection strategy, imple-
mented as follows. First, given the user-specified bounding box, we

Fig. 3. Four trials on a testing image with interactions on different
positions. Given the green bounding box, the red curve shows the
corresponding result obtained by our method.

conduct normalized cross-correlation (NCC) based template match-
ing on the grayscale image. Then, the detections whose HOG [21]
has a NCC with that of the template lower than 0.8 are removed. Fi-
nally, some missing detections are remedied in accordance with the
prior that the repetitions are horizontally and vertically aligned.

It can be shown that each step of the iterative algorithm mini-
mizes the total energy. Hence, the energy decreases monotonically
and the algorithm is guaranteed to converge at least to a local min-
ima. It is straightforward to automatically terminate the iterations
when the decreasing rate of the energy is smaller than a threshold
(experimentally set as 10−2). In our experiments, the algorithm typ-
ically terminates with two or three iterative steps.

4. EXPERIMENTS

We conducted a series of experiments to demonstrate the validity of
our approach. The first experiment tests the stability of our method
against the user interaction. In the second experiment, the proposed
method is tested on 100 images from the Facade Database1. Finally,
our method is compared with GraPes2 [11]. Throughout the experi-
ments, the results are measured via F-score, which is defined as:

F =
2 · TP

2 · TP + FN + FP
, (8)

where TP, FN and FP are the true positives, false negatives and false
positives, respectively. The parameter λ is set as 10, since we found
that λ = 10 is appropriate for most testing images. The number of
Gaussian components of each GMM is set as 3 because generally the
color distributions of facade images are relatively uncomplicated.

4.1. Stability against User Interaction

Since our approach needs a user-specified bounding box, the stability
against user interaction is tested. For each window on the image with
size 480× 904 shown in Fig. 3, 100 trials are implemented. In each
trial, the four borders of the bounding box deviate several pixels from

1http://www.kevinkaixu.net/k/projects/symbr.html
2http://vision.mas.ecp.fr/Personnel/teboul/grapes.php
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Fig. 4. Representative results of our method. In each image, the
green bounding box is user-specified and the red curve shows the
segmentation result. Top left is a failure case of [13].

pre-defined baselines. The offsets are random integers in [0, 15].
Four trials and corresponding results are shown in Fig. 3. Among
all the 800 trials on the image, the F-score is 0.973±0.024 (mean±
standard deviation). Thus, our method is stable on the image.

4.2. Results on 100 images from Facade Database

We further test our approach on 100 images selected from Facade
Database. For a kind of repetitions on each image, the bounding
box of each repeated element has been manually given. Tested with
these bounding boxes, the corresponding F-score is recorded. The
final F-score of the image is calculated as the average of these trials.
Among the images, 87% images achieve F-scores higher than 0.9,
as shown in Fig. 5. It should be mentioned that an F-score higher
than 0.9 means that all the repetitions are detected. In addition, our
method produce higher F-score than template matching, and the iter-
ative optimization significantly improves the results of initial detec-
tion. Some representative results of our method are shown in Fig. 4.
As illustrated in Fig. 4, our method is robust to external occlusions,
weakly changing illuminations and appearance variations.
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Fig. 5. The empirical cumulative distribution function of F-score on
100 images from Facade Database. Template matching and initial
detection is discussed in section 3.3.

4.3. Comparative Results with GraPes

Our method is compared with GraPes [11], which implemented
shape grammar parsing via reinforcement learning. Note that our
method only needs the user-specified bounding box, while GraPes

(a) (c) (d)(b)

(2)

(3)

(1)

Fig. 6. The comparative results with GraPes. (a) The testing im-
age with user interaction. Note that our method only needs the blue
bounding box. (b) The manually labeled ground truth. (c) Among
the 10 trails, the best result of GraPes. (d) Our segmentation result.

needs additional strokes on the background. Both approaches are
ran 10 times on 3 testing images from Ecole Centrale Paris Facades
Database3. The visual results are shown in Fig. 6 and the quanti-
tative evaluations are illustrated in Fig. 7. As shown in the figures,
our method produces more accurate results. Moreover, our labeling
results in 10 trials are all the same. In contrast, there are large
variances among the results of GraPes.
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Fig. 7. The bar shows the mean F-score of both method in the 10

trials on the 3 images shown in Fig. 6. Our method produces the
same results in the 10 trials, while the error bar shows the standard
deviation of F-scores among the results of GraPes.

5. CONCLUSION

This paper implements a pixel-wise segmentation for repetition ex-
traction on facade images. The repetitions are modeled by GTS and
is explicitly formulated as the product of multiplying a repeated el-
ement by two block matrices interpreting the symmetries. This for-
mulation is embedded into the graph cut based image segmentation
framework. Therefore, repetition detection and segmentation are
jointly formulated as a GTS constrained energy minimization prob-
lem. After the initial detection, the problem is alternatively solved
by dynamic programming and graph cut. The experimental results
demonstrate the effectiveness of our method.

3http://vision.mas.ecp.fr/Personnel/teboul/data.php
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