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ABSTRACT

In this paper, we propose a graph cuts (GC) based probability
propagation approach to automatically extract road network
from complex remote sensing images. First, the support vec-
tor machine (SVM) classifier with a sigmoid model is applied
to assign each pixel a posterior probability of being labelled as
road class, which avoids the weaknesses of hard labels in gen-
eral SVM. Then a GC based probability propagation algorith-
m is employed to keep the extracted road results smooth and
coherent, which can reduce the connections between road-
s and road-like objects. Finally, a road-geometrical prior is
considered to refine the extraction result, so that the non-road
objects in images can be removed. Experimental results on
two remote sensing image datasets indicate the validity and
effectiveness of our method by comparing with two other ap-
proaches.

Index Terms— Road extraction, Support Vector Ma-
chine, Sigmoid model, Graph cuts, Probability propagation.

1. INTRODUCTION

Road extraction from remote sensing images has attracted
considerable attention due to its great applications in map up-
date and intelligent transportation systems over the last three
decades. Various approaches [1, 2, 3, 4, 5, 6] were proposed
to address this issue. In spite of all these attempts, there is
no widely recognized solution to the problem. The difficul-
ties mainly lie in two aspects: complicated backgrounds and
occlusions due to trees and buildings.

Generally, the existing approaches can be classified into
semi-automatic methods and fully automatic methods.

Semi-automatic methods include dynamic programming
[1], template matching [2] and active contours [3, 4], etc. Dy-
namic programming formulates the extraction problem as the
minimization of a cost function defined on a graph. Template
matching uses an adaptive least square matching algorithm.
It can extract road central lines in any orientation. However,
these two algorithms mentioned above are a little sensitive to
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Fig. 1. Comparing results with different methods in the pres-
ence of cars and roofs. From left to right: (a) original image,
(b) result of method 1 [7], (c) result of method 2 [8], (d) result
of our method. Our method is more effective to suppress the
spurs and reduce the influence of occlusions due to cars.

seed positions and need a great amount of human interaction-
s. Active contours provide a convenient way of incorporating
geometric properties of the roads to guide the extraction pro-
cess, which is an intuitive approach. Nevertheless, active con-
tours method may not obtain satisfactory results under com-
plex backgrounds and its computing time is somewhat longer
than other methods.

Fully automatic methods [5, 6] have drawn considerable
attention due to their convenience. While to our knowledge,
most of them are only adapted to a particular range of spe-
cific conditions. For example, [5] and [6] can not effective-
ly work in the case of occlusions and complex backgrounds.
Road characteristics may show significant variations in differ-
ent situations. Thus it is very intractable to develop a general
framework for diverse cases.

To solve the problems presented above, a new automatic
road extraction method via graph cuts (GC) based probabil-
ity propagation is proposed. The main contributions of our
approach are highlighted as follows.

1. A soft probabilistic output is employed in support vec-
tor machine (SVM) classifier. It can distinguish the de-
gree of its belief that one pixel belongs to road class,
which improves the accuracy of the label propagation
during the process of the GC based algorithm.

2. A GC based probability propagation algorithm is used
to smooth the road areas, which can remove the spurs
and make road areas coherent. An example is illustrat-
ed in Fig. 1, our results are more coherent and show
less spurs.
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The remainder of this paper is arranged as follows. In
Section 2, the proposed methodology is introduced. Section
3 exhibits experimental results and comparisons on two data
sets. Conclusions and discussions will be drawn in Section 4.

2. THE PROPOSED METHODOLOGY

In this section, we will describe the details about how our ap-
proach works. As shown in Fig. 2 , given an original image,
we aim to extract road network accurately. We first present
SVM probabilistic output (see Section 2.1 ), which plays a
great role in extraction process. Then GC based probabil-
ity propagation algorithm is used to keep the extraction re-
sults smooth and coherent (see Section 2.2 ). Finally a road-
geometrical prior is adopted to eliminate those road-like ob-
jects (see Section 2.3 ).

2.1. SVM Probabilistic Output

SVM is widely used in binary classification due to its rela-
tive high accuracy in the case of high dimension and small
training set [9]. These properties are exactly what we need
in road extraction. Besides the spectral distinctiveness be-
tween road and non-road areas, we also find that road areas
are smoother than backgrounds. Thus, image gradients are
integrated as discriminative feature for road extraction. We
define zi= (sTi ,∇xIi,∇yIi)

T as the feature vector of pixel i
in image I , where si denotes the RGB spectral vector, ∇xIi
and∇yIi are the image gradient information in horizontal and
vertical coordinate respectively. It should be noticed that al-
l data in zi are normalized to the range of [0, 1]. A general
SVM forces each test sample to have hard labels exactly equal
to 1 or -1, which is unsuitable for the classification results of
less confidence. To increase the distinction among classifica-
tion results, a sigmoid model [10] is constructed to map the
SVM output to posterior probabilities as follows:

P (yi = 1|fi) =
1

1 + exp(wTfi)
, (1)

where w= [α, β]T , fi= [fi, 1]
T , fi is the general SVM out-

put and yi ∈ {−1, 1} is the label. α and β are unknown pa-
rameters of sigmoid function. Given a training set {(fi, yi)},
a new training set {(fi, ti)} is constructed as,

ti =
yi + 1

2
, (2)

where ti is the targeting probability representation.
The parameters α and β are estimated by minimizing the

negative log likelihood of the training data, which is a cross-
entropy error function as follows:

min−
∑
i

ti log(pi) + (1− ti) log(1− pi), (3)

where pi is defined in Eq. (1) for data i.

Fig. 2. The illustration of processing stages of our method.
(a) Original image. (b) Probabilistic map without gradient
information. (c) Probabilistic map with gradient information.
(d) GC based processing result. (e) Final result. (f) Ground
truth.

For the purpose of robustness and avoidance of over-
fitting, a cross-validation strategy is employed to estimate the
parameters of SVM. We implement the probability estima-
tions by applying LibSVM package [11] for convenience.

To verify the effectiveness of the gradient information, a
comparison is illustrated in Fig. 2 (c) and (d). As can be seen,
(c) is much cleaner and more accurate than (b). Thus, it is
necessary to use the gradient information as features.

2.2. Graph Cuts Based Probability Propagation

After the previous processing step, we have obtained the
pixel-wise probability of road class. Nevertheless, the result
of road region lacks of smoothness and coherence. Hence a
GC [12, 13] based framework is employed to tackle this prob-
lem. This stage can be described as a pixel labeling problem,
which is formulated as a cost function:

C(L) = λ · Cr(L) + Cb(L), (4)

where L is a labeling set, Cr(L) and Cb(L) are regional ter-
m and boundary term respectively, λ is a trade-off parameter.
The regional term Cr(L) defines the individual penalty for
classifying each pixel into road or non-road class. The bound-
ary term describes the coherence between spatially neighbor-
ing pixels.

In graph cuts, an undirected graph G = {V, E} is con-
structed, where vp ∈ V denotes a pixel p ∈ I and ep,q ∈ E
represents an undirected edge between two neighbouring pix-
els p, q ∈ I . Specifically, the regional term can be defined as
follows:

Cr(L) =
∑
p∈V

Vp,Lp
, (5)

where V is pixel set in the image, Lp is the label of pixel p,
Vp,Lp is the cost of assigning pixel p to label Lp. It can be
computed as:

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20145073



Vp,Lp = − log(Prp), (6)

here Prp is the probability of assigning pixel p to the road
class, which is obtained from the classifier (as Eq. (1) ).

The boundary term can be denoted as:

Cb(L) =
∑

p,q∈N
Ep,q ·m(Lp, Lq), (7)

where N contains all unordered pairs of neighbouring pixels
under a standard 8-neighborhood system. Ep,q measures the
difference between two neighbouring pixels as:

Ep,q =
1

||zp − zq||2 + ε
, (8)

where zp and zq are the feature vectors defined as the previ-
ous section. ε is used to avoid a zero divisor. In the following
experiments, we set ε = 0.001.

In Eq. (7), m(Lp, Lq) can be denoted as metric distance
to measure the cost of labeling smoothness as:

m(Lp, Lq) =

{
0, Lp = Lq,

1, Lp 6= Lq.
(9)

After the GC based algorithm, most roads can be extract-
ed, as Fig. 2 (d) shows. However, some road-like objects are
also improperly detected as roads. Thus a road-geometrical
prior is incorporated to eliminate those road-like residues.

2.3. Elimination with road-geometrical prior

In urban areas, there are many substances appearing as roads,
such as roofs and cars, etc. Compared with roofs, roads are
more connected in topology. Thus we define the objects con-
taining above M pixels as roads. All others are suspected to
be non-road class. Empirically, we set M = 1500. In remote
sensing images, roads are elongated ribbons with long length
and short width. Thus, this property is used in this work. We
use a bounding box to approximate the isolated objects. The
length-width ratio is achieved as follows:

ratioi =
Li

Wi
, (10)

where Li andWi denote the length and width of the bounding
box for object i respectively. Any detected objects with bigger
ratio than a given threshold is reclassified as the road class.
We find it sufficient to fix the threshold as 5.

3. EXPERIMENTS

To verify the performance of our method, plentiful experi-
ments as well as comparisons are provided in this section.

3.1. Dataset Description

Our datasets were collected from the area of Toronto, Ontario,
Canada(43◦N , 79◦W ). Two datasets, each consisting of 5
images, are from different areas to verify our method. All
images have a size of at least 600 × 600 pixels with a spatial

resolution of 1.2 m per pixel. All these images have complex
backgrounds and occlusions of trees and cars. We randomly
sample 3 patches of 200 × 200 pixels from the first image of
each dataset as training set. All the images of each dataset
constitute the test set. We manually labelled the ground truth
of each image as a reference data to evaluate the quality of the
methods.
3.2. Compared Algorithms

To evaluate the performance, the proposed method is com-
pared with two related methods. The details are listed as fol-
lows:

1. Our method: SVM-GC method.
2. Method 1: K-means clustering and morphological op-

erations method [7].
3. Method 2: support vector machine and morphological

operations method [8].
It should be noted that codes of the other two methods are

not readily available, thus we implement them according to
the details described in their papers. Our codes can achieve
the same performance as the original paper shows. In the fol-
lowing experiments, we adjust the parameters to gain the best
performance of the two approaches.
3.3. Parameter Selection

In this paper, SVM with radial basis function (RBF) kernel is
separately trained for each dataset. Here two parameters of
RBF, C and γ, are selected by five-fold cross validation. The
parameter λ in GC based probability propagation algorithm is
tuned empirically. While we find that satisfactory results for
two datasets can be obtained when setting λ = 1. Thus we
keep the parameter fixed in the following experiments.
3.4. Quality Evaluation

Generally, the evaluation of road extraction algorithm can be
measured by completeness, correctness and quality defined in
[14]. Completeness measures the proportion of matched road
areas in reference road data. Correctness represents the per-
centage of matched road areas in extracted road data. Quality
is a combination of correctness and completeness. They are
defined as follows:

Completeness =
TP

TP + FN
, (11)

Correctness =
TP

TP + FP
, (12)

Quality =
TP

TP + FN + FP
, (13)

where TP, FP and FN are the true positive, false positive and
false negative, respectively.

3.5. Performance Evaluation

To evaluate the performance of our method, we compare our
method with two other approaches on two datasets. The eval-
uation includes two parts: visual comparisons and quantita-
tive comparisons.
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( a1 ) ( b1 ) ( c1 ) ( d1 ) ( e1 )

( a2 ) ( b2 ) ( c2 ) ( d2 ) ( e2 )

Fig. 3. Visual comparisons with different methods. There are two rows and five columns of subfigures. Each row shows results
on one data set. From left to right: (a) original image, (b) result of method 1, (c) result of method 2, (d) result of our method,
(e) ground truth. In (b), (c) and (d), true positive ( TP) is marked in green, false positive (FP) in red, false negative (FN) in blue.
(Best viewed in color) 1

Datasets completeness ( % ) correctness ( % ) quality ( % )
Method 1 Method 2 Ours Method 1 Method 2 Ours Method 1 Method 2 Ours

Image 1 77.79 76.16 88.38 73.11 76.18 77.23 60.49 61.51 70.11
Image 2 79.20 69.90 79.83 82.21 90.36 90.34 67.61 65.04 73.55
Image 3 81.25 78.43 84.73 71.61 75.96 83.01 61.45 62.84 72.21
Image 4 73.77 70.29 84.61 78.99 87.53 86.15 61.67 63.89 74.48
Image 5 72.99 75.64 84.47 86.82 81.73 87.61 65.71 64.70 75.46

Avg. 77 70.08 84.41 78.54 82.35 84.87 63.39 63.60 73.16
Image 6 76.69 81.03 88.89 74.71 92.01 91.71 60.89 75.71 82.27
Image 7 80.43 66.89 80.97 77.03 90.91 94.88 64.87 62.69 77.57
Image 8 76.69 80.36 88.21 77.53 91.73 92.32 62.75 74.92 82.18
Image 9 86.47 77.65 85.78 70.05 84.77 85.38 65.83 68.15 76.25

Image 10 80.98 67.95 80.50 77.90 86.54 90.74 65.92 62.97 74.68
Avg. 80.25 74.78 84.87 75.44 89.19 91.01 64.05 68.89 78.59

Table 1. Quantitative comparisons with two methods in two datasets, where the red values marked in bold are the best. (Best
viewed in color)

Visual comparisons: In order to display an intuitive
comparison, we illustrate the results comparing with ground
truth. Fig. 3 shows the comparing results. More FP appears
in method 1 and method 2, namely the red parts in Fig. 3 (b1),
(c1), (b2), (c2). In addition, our experimental results show
less isolated FN (see Fig. 3 (e1),(e2)). Thus the performance
of our proposed method is more similar to the ground truth.

Quantitative comparisons: Table 1 shows the experimen-
tal results on two urban data sets. As we know, completeness
and correctness can be one-sided measurement. We can en-
large the completeness at the cost of reducing the correctness,
and visa versa. The quality term combines with the other two
criteria, which is a overall desirability. The results of our pro-
posed approach achieve better or comparable performance in
terms of two other methods. Especially, our method is consis-
tently better than other methods in quality term. In summa-

ry, average quality of our method is 10% higher than others,
which demonstrates the validity of our approach.

4. CONCLUSIONS AND DISCUSSIONS

In this paper, we have proposed an automatic road extraction
method for remote sensing images, which is based on SVM
and GC algorithm. Experiments on two urban road data sets
validated that our proposed approach achieves better perfor-
mance both in qualitative and quantitative comparisons.

Our method still has some limitations that we intend to
investigate in future. First, in case of severe occlusions, our
method can not effectively work. A strategy that is robust
to occlusions should be added to our approach. Besides, our
approach does not combine road information at different reso-
lutions, which will be incorporated into our following works.
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