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ABSTRACT

In this paper, an improved 2D+t texture completion frame-
work is proposed, providing high visual quality of completed
dynamic textures. A Spatiotemporal Autoregressive model
(STAR) is used to propagate the signal of several available
frames onto frames containing missing textures. A Gaussian
white noise classically drives the model to enable texture in-
novation. To improve this method, an innovation process is
proposed, that uses texture information from available train-
ing frames. The proposed method is deterministic, which
solves a key problem for applications such as synthesis-based
video coding. Compression simulations show potential bitrate
savings up to 49% on texture sequences at comparable visual
quality. Video results are provided online to allow assessing
the visual quality of completed textures.

Index Terms— Texture completion, parametric method,
autoregressive model.

1. INTRODUCTION

Texture completion is the art of filling unknown regions in
images and videos. Texture completion or extrapolation is
addressed by two main techniques: texture synthesis and in-
painting. Texture synthesis [1] is based on reproducing the
statistics of textures whereas the inpainting methods [2] aim
at propagating structures. Two main approaches can be distin-
guished: parametric methods estimate a model of the texture
distribution and then fill the output surface, whereas non-
parametric approaches build the output signal on the fly by
matching known information with input samples. Parametric
methods aim at filling the output surface by approximating
the probability density function (PDF) of the source texture.
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Among existing parametric approaches [3, 4, 5, 6], autore-
gressive (AR) methods have shown good results when syn-
thesizing stationary textures which can be approximated as
Markov Random Fields (MRF). Although the Autoregressive
Moving Average (ARMA) method [6] provides a better tem-
poral modeling, it is hardly adaptable to spatial and temporal
boundaries. Many works, such as Woods [7], Chellappa et al.
[4], Deguchi [5] and Tugnait [8], adapted the original 1D AR
model to synthesize 2D textures. Kokaram and Rayner [9]
proposed to fill blotches in old movies by interpolating the
signal via 3D AR-based interpolation, using a model bigger
than the missing region. Szummer [10] extended the idea
to video extrapolation with a spatio-temporal AR (STAR)
model. Concerning synthesis-based compression, the para-
metric approaches are faster than non-parametric ones [11].
The work of Khandelia et al. [12] presents a hybrid video
codec based on STAR synthesis. Bitrate savings are promis-
ing, however the output images are of small size and difficult
to evaluate. Bao et al. [13] proposed a scheme in which AR
training is done for each frame in order to synthesize them
from H.264 reference frames. However, AR parameters must
be computed and transmitted to the decoder for each region
at each frame since the distance between the processed frame
and references changes.

In this paper, a 2D+t parametric approach has been cho-
sen for its low computational cost, in particular when dealing
with videos. We propose to improve the STAR method by
changing the innovation term computation, which results in
high quality completed textures. According to expert viewers
subjective assessment, the proposed framework visually out-
performs existing texture completion approaches in this con-
text. The resulting sequences are provided online, enabling
the reader to assess their quality. Moreover, important bitrate
savings are measured compared to the last standard for video
compression HEVC [14].

The following Sec. 2 presents the framework and details
the proposed improvements. Experimental results are then
presented in Sec. 3.
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Fig. 1. STAR model in the case of a spatial size of 5× 5 and
a temporal size of two past frames (cx = 2, cy = 2, ct = 2).

2. PROPOSED FRAMEWORK

The proposed scheme aims at synthesizing missing dynamic
textures, using available reference samples which can come
from past but also future frames. Its input is a video with
some frames containing marked missing textured regions. It
outputs a processed video where the missing parts are filled
in. In the rest of the paper, reference groups of pictures are
called GOPRef and groups of pictures with missing textures
to be synthesized are called GOPSynth. The proposed texture
completion framework contains the following steps.

- The STAR model is estimated, which requires to train it
on available texture samples. In the video completion context,
the training area (TA) can contain pixels from past and future
frames when available.

- The main improvement of the proposed STAR scheme
lies in a new step for computing the innovation term.

- GOPSynth are filled using the STAR method.
- Contrary to AR interpolation [9], the causal model is

smaller than the missing region. Seam artifacts may then ap-
pear at bottom and right borders due to the raster scan filling.
A low computational cost post-processing approach, based on
Poisson editing [15], is therefore proposed.

2.1. Classical STAR method

The STAR synthesis is performed one pixel at a time using
a linear combination of its causal neighbors plus an additive
innovation term. In the case of 2D+t, each synthesized pixel
can be expressed as

Îp =
∑
q∈V

αqIq + ε(p), (1)

where Iq represents a source sample at location q and Îp rep-
resents the completed sample at location p = (x, y, t). V
contains the known spatial and temporal neighboring samples
of p. An example of this neighborhood is depicted in Fig.
1. As in [12], squares of size (2cx + 1, 2cy + 1) centered
on the position collocated with the current pixel are used in
past frames since all their samples are expected to be known.
The coefficients αq correspond to the STAR parameters and
ε(p) denotes the innovation term at the current location p. The

IA

Synthesized frames

...

Required
frames

Fig. 2. Frame selection for current innovation term. Example
with a IA of 4 frames. When the temporal STAR model size
ct = 2, 2 more past frames are required.

STAR parameters are estimated by means of solving the fol-
lowing least square problem

αC×1 = argmin
α

‖yS×1 −XS×CαC×1‖2, (2)

where α
(
α ∈ RC

)
is a vector containing the STAR param-

eters in a raster scan order. y (y ∈ RS) denotes the known
samples in the TA and X

(
X ∈ RS×C

)
represents the neigh-

borhood matrix for each of the samples y. C is the number of
STAR parameters and S = sxsyst the size of the TA which
contains st frames. Eq. 2 can be solved with the closed-form
solution:

α = (XTα)−1(XTy). (3)

When Eq. 2 has no solution, a pseudo inverse of XTX is de-
termined [16]. Classically, the function ε is a Gaussian white
noise process with zero mean and variance :

σ2 =
||yS×1 −XS×CαC×1||2

S
, (4)

and denotes the innovation term which drives the STAR
model. In this work, we propose another way of computing
this innovation term to better capture and reproduce known
textures in the missing region.

2.2. New innovation term

The STAR model has been estimated from the TA which has
been designed at the first step based on known samples. We
propose to reuse this data. To compute the innovation term,
a new area can be defined which contains known samples in
available frames and is collocated with the missing region. In
the following, we call this new area the Innovation term Area
(IA). The IA is of the same spatial size as the missing region
and of temporal size s′t and may coincide with the TA but
this is not mandatory. The previously computed STAR model
is then applied on the IA, which results in a residual when
comparing to the source signal. This residual per frame of the
IA defines the innovation term:

ε(p′) =
∑
q∈V

αqIq − Ip′ , (5)

with p′ = (x, y, t′) corresponding to the spatial position of
p = (x, y, t) in Eq. 1 but at different temporal location among
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Fig. 3. Merge of forward and backward synthesis using the
function λ.

IA frames. While filling a missing texture, the remaining
choice lies in the frame position to determine the current in-
novation term. Two main options have been experimentally
tested: random and same order cycle. Fig. 2 depicts the latter
which provides the best visual results. In this case, if t0 cor-
responds to the first frame to be synthesized and t′0 = t0 − s′t
the first frame in the IA,

Îp(t0+t) =
∑
q∈V

αqIq + ε(p′(t′0 + t mod s′t)), (6)

where mod s′t corresponds to the modulo operation to drive
the frame selection, as shown with arrows in Fig. 2. Not only
does this new innovation term provide higher visual quality,
but also is deterministic, which is a key issue when encod-
ing frames. This allows the encoder to perform prediction
using synthesis modes, while knowing the exact future recon-
structed values at the decoder side.

Furthermore, when dealing with the YUV color space,
this method enables to compute the training on the Y chan-
nel only. U and V are then copied from the current IA loca-
tion. The coherency between color channels is thus preserved,
whereas this is impossible when separately synthesizing the 3
channels. Computation time is also reduced since the model
is computed on Y only.

The following section details the proposed way of dealing
with both past and future GOPRef.

2.3. Handling consistency with both temporal boundaries

In the context of video compression or transmission errors,
some future frames can be available and the temporal consis-
tency has to be saved. In this work, we propose to perform
forward synthesis using past frames and backward synthesis
using available frames in the future. Then, both forward and
backward versions are merged using the coefficients

λ(t) =
1

1 + exp(N2 − t)
(7)

where N corresponds to the number of synthesized frames.
Then, the final values are given by

Îp = λ(t)Îfwdp + (1− λ(t))Îbwdp (8)

Bottom Right All

Fig. 4. Masks used in experiments. Bottom: 512×160, Right:
352× 416 and All: 576× 416.

Îfwdp (resp. Îbwdp ) being the forward (resp. backward) syn-
thesized values at frame t. This merge function weighted by
λ is depicted in Fig. 3 to prevent blurring on many frames.
To save computation time, the training step can be performed
once. The STAR model is then used for both forward and
backward directions, while the IA contains future frames for
the backward synthesis.

3. EXPERIMENTAL RESULTS

This section provides video synthesis results and potential
video coding gains. Although quality metrics have received
increasing attention over recent years, no satisfactory tools
enable to assess the perceived quality of dynamic textures.
This being so, extensive video results can be found on the
following web page:
http://fabienracape.fr/hhi/TextureCartoonCompletion.html
For experiments, a test set of 4 dynamic textures has been
selected, containing the HD sequences Red Kayak, Riverbed,
West Wind Easy and Ducks Take Off, formatted to 8 bit 4:2:0
YUV files and cropped to 640 × 480 (73 frames). 3 regions
to be synthesized have been designed as shown in Fig. 4.

Fig. 5 depicts the adopted sequence structure, which is
adapted to HEVC random access GOPs [14]. The structure
contains two synthesized GOPs of 23 frames each. GOPRef
contain one more frame compared to HEVC GOPs (in gray)
to preserve the first key frame for predicting the rest of the fol-
lowing GOP. One can also notice that the length of {GOPRef+
GOPSynth} corresponds to the intra period, which allows to
start a new encoding sequence with an Intra picture, after syn-
thesized frames. Hence, the synthesis has no impact on the
prediction of future temporally predicted frames.

The presented image results come from the synthesis with
a STAR model of size (cx = cy = 7, ct = 1). The TA and
the IA are collocated with the missing region. 9 frames are
available minus ct = 1 required frame (Fig. 5 and 2). The
TA size is set to 4 since it drastically impacts the computation
time by setting the number of equations for the least square
solver. The proposed order for the innovation term computa-
tion can result in temporally periodic artifacts when N > s′t,
since the use of IA frames loops (cf. Fig. 4). However, these
artifacts remain much less annoying than those introduced by
randomly choosing the frame in the IA (cf. online videos).
Therefore, the larger the IA the better the loop artifact is re-
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Fig. 5. Experimental GOP structure. Reference GOPs (GOPRef) and synthesized GOPs (GOPSynth) do not follow the HEVC’s
random access GOP structure which basically contains 8 frames.

Source and mask 1st frame 2nd frame

Fig. 6. STAR Results on Riverbed using (top row) the classi-
cal white noise and (bottom row) the proposed method. The
first two synthesized frames are shown.

Mask Basic scheme Post-processing

Fig. 7. Results on Red Kayak using the proposed method
without (basic) and with post-processing. One can notice the
seams without post-processing in the bottom and right.

duced. Thus s′t = 8. Although these parameters should ide-
ally be optimized for each input texture, the proposed param-
eters give good results in most cases.

In this case of texture prediction, the classical AR meth-
ods using white noise are not adapted to fully describe natural
textures. One can see in Fig. 6 the higher quality obtained
when using the proposed scheme (same STAR parameters).
Moreover, to process 73 frames with the Bottom region, 66s
are required in average with our scheme and 138s with the
basic (3 channels) STAR, using our c++ implementation.

Fig. 7 shows the Poisson editing-based post-processing
result, using an overlap of 16 pixels at the bottom and right
border. This method proves to be sufficient for an efficient
seam removal.

Concerning the compression application, Fig. 8 shows
the different bitrate savings when encoding the sequence
Red Kayak with and without regions removal, using the
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Fig. 8. Observed bitrate savings when removing the regions.
The GOP structure depicted in Fig. 5.

HEVC software version HM 11.0 [17]. The range of QP
{20, 25, 30, 35, 40} has been tested. The Coding Units to be
synthesized are skipped by the encoder and flagged to the
decoder for synthesis. One can notice, for instance, gains of
10% to 25% with the Right region. The limits of these results
lie in the hypothesis that the produced artifacts are impercep-
tible. Extensive video results can be assessed online but no
objective metrics results can be provided. In this case, the
lower the QP, the higher the bitrate and thus bitrate savings
since much less information is transmitted. However, the
presented results show how promising this scheme could be,
coupled with an adapted prediction mode selection.

4. CONCLUSION AND FUTURE WORK

This paper proposed an improved 2D+t autoregressive method
for video texture completion providing high quality video re-
sults. The synthesis is deterministic and can be controlled
which is of great value for the video coding application.
Avoiding the transmission of residuals of dynamic regions
can drastically reduce bitrate, using the HEVC software HM
11.0. Future work will focus on merging forward and back-
ward synthesis and on the better utilization of the information
from both past and future frames. Assessing the quality of
the synthesis at the encoder side also remains a key issue for
mode selection : classical prediction vs. synthesis.
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