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ABSTRACT

This paper presents a novel discrete Mumford-Shah model
for the simultaneous bias correction and image segmenta-
tion(SBCIS) for images with intensity inhomogeneity. The
model is based on the assumption that an image can be ap-
proximated by a product of true intensities and a bias field.
Unlike the existing methods, where the true intensities are
represented as a linear combination of characteristic functions
of segmentation regions, we employ L0 gradient minimiza-
tion to enforce a piecewise constant solution. We introduce
a new neighbor term into the Mumford-Shah model to allow
the true intensity of a pixel to be influenced by its immediate
neighborhood. A two-stage segmentation method is applied
to the proposed Mumford-Shah model. In the first stage,
both the true intensities and bias field are obtained while the
segmentation is done using the K-means clustering method in
the second stage. Comparisons with the two-stage Mumford-
Shah model show the advantages of our method in its ability
in segmenting images with intensity inhomogeneity.

Index Terms— Mumford-Shah model, segmentation, in-
tensity inhomogeneity, L0 minimization

1. INTRODUCTION

As a fundamental topic in image processing, the goal of im-
age segmentation is to decompose the image domain into lo-
cal regions. Such techniques are critical in computer aided
diagnosis and computer aided treatment. For example, accu-
rate segmentation of coronary arteries is important to quantify
coronary artery stenosis.

Mumford and Shah [1] treated the given image as a func-
tion and pursued its piecewise smooth approximation, in
which the boundaries are referred to the transition between
adjacent patches of the approximation. Let Ω ∈ R2 be open
and bounded and Γ be a closed subset in Ω. Given an ob-
served image f : Ω → R, to find its piecewise smooth
approximation u, Mumford and Shah proposed to minimize
the following functional:

min
u,Γ

∫
Ω

(f − u)2dx+ µ

∫
Ω\Γ
|∇u|2dx+ λ|Γ|, (1)
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where µ and λ are positive parameters and |Γ| denotes the
length of Γ. Since the Mumford-Shah functional Eq. (1) is
non-convex, finding the minimizer is not straightforward and
may trap in local minima.

Recently, a two-stage Mumford-Shah(TSMS) model was
proposed [2]. It separates the segmentation task of minimiz-
ing the functional Eq. (1) into two stages, i.e., the first stage of
finding a smooth solution to a convex variant of the Mumford-
Shah functional and the second stage of thresholding the solu-
tion into different phases for segmentation. More specifically,
the convex Mumford-Shah model was proposed as follows

min
u

∫
Ω

(f − u)2dx+ µ

∫
Ω

|∇u|2dx+ λ

∫
Ω

|∇u|dx. (2)

With the solution u solved in the first stage by (2), the seg-
mentation results are obtained by thresholding u with prop-
er threshold(s). Generally speaking, there are the following
good characteristics of this two-stage segmentation frame-
work

¬ The convex variant Mumford-Shah functional in the
first stage has the global minimizer u, which can be
easily and quickly computed by standard optimization
techniques, such as the split-Bregman algorithm [3] and
the Chambolle’s dual method [4];

­ The thresholding in the second phase is done by either
K-means method or user specified threshold(s), which
can be solved quickly;

® Neither need to 1) specify the number of segments K
(K ≥ 2) in the first stage nor to 2) recompute u if the
thresholds are changed to reveal different segmentation
features.

Intensity inhomogeneity (i.e, bias field) occurs in many
medical images from different modalities, such as x-ray
radiography, computer tomography(CT) and magnetic res-
onance(MR) images, presenting a considerable challenge
in image segmentation. The same phenomenon, caused by
nonuniform illumination, also exists in natural images. Sev-
eral methods have been proposed to deal with the intensity
inhomogeneity. Expectation-maximization(EM) and fuzzy
c-means(FCM) have been widely employed in these methods
[5, 6]. The bias corrected fuzzy c-means(BCFCM) [7] is
one of the most successful methods in removing the effect of
bias field. It introduces a neighborhood term that enables the
class membership of a pixel to be influenced by its neighbors
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to enforce the solution towards a piecewise homogeneous
labeling.

In this paper, we propose a novel variant Mumford-Shah
model implemented in the two-stage segmentation framework
for the tasks of bias correction and image segmentation. Be-
sides the similar merits of the TSMS model, our model has
also the following new features

¬ We model the image as the product of true intensities
and a smooth function in the two-stage segmentation
framework. Unlike other existing works [8, 9, 10, 11],
which are constructed based on the assumption that true
intensities are represented as a linear combination ofK
characteristic functions, each identifying one segmen-
tation region, with K specified at the beginning, our
image model does not rely on such assumption;

­ We enforce the true intensities to be piecewise constan-
t by making use of L0 gradient minimization, which
minimize the non-zero gradients to approximate promi-
nent structure;

® To eliminate the effect of bias field, we introduce a
neighbor term acting as a regularizer to bias the true
intensities towards homogeneity.

For the test image with serious intensity inhomogeneity,
both the TSMS model and bias-corrected fuzzy c-means ob-
tain erroneous results with some part incorrectly identified,
while our method can provide a very good result, see Fig. 1.

(a) Input (b) TSMS (c) BCFCM (d) Our result

Fig. 1. A three-phase segmentation example.

2. PROBLEM FORMULATION

2.1. Image model
The observed image is modeled as a product of the true in-
tensities generated by the underlying structure and a spatial-
ly varying factor called the bias field. Using the logarithmic
transformation to the intensities, it allows the artifact to be
modeled as an additive bias field

f(x) = u(x) + w(x), x ∈ Ω, (3)

where u and f are the true and observed log-transformed
intensities, respectively, and w is the bias field.

2.2. L0 regularization
In order to regularize the piecewise constant field u, we
explore the L0 gradient minimization to enhance highest-
contrast edges by confining the number of non-zero gradients
[12]. We denote the gradient ∇up = (∂xup, ∂yup)

T for each
pixel p, which is calculated as the difference between neigh-
boring pixels along x and y directions. The corresponding L0

measure is expressed as

C(u) = #{p
∣∣ |∂xup|+ |∂yup| 6= 0}, (4)

where #{} is the counting operator, outputting the number of
p that satisfies |∂xup|+ |∂yup| 6= 0.

2.3. The variant Mumford-Shah model
Based on the image model Eq. (3) and L0 regularization of
the piecewise constant function u, we obtain a new variant of
the Mumford-Shah model Eq. (1) in the discrete form

min
u,w

{∑
p

(fp − up − wp)2 + µ
∑
p

|∇wp|2 + λC(u)
}
.

Similar to BCFCM, we introduce a term that allows the solu-
tion of u to be influenced by its neighborhood. We define the
modified objective functional E as follows

E(u,w) =
∑
p

(fp − up − wp)2 + µ
∑
p

|∇wp|2 + λC(u)

+
α

NR

∑
p

( ∑
r∈Np

(fr − wr − up)2), (5)

where α is a positive parameter,Np is the set of neighbors in
a window around p and NR is the cardinality of Np.

3. MINIMIZATION ALGORITHM

We introduce auxiliary variables hp and vp, corresponding to
∂xup and ∂yup, respectively, and rewrite the functional E in
the following way

E(u,w, h, v) =
∑
p

(fp − up − wp)2 + µ
∑
p

|∇wp|2

+λC(h, v) +
α

NR

∑
p

( ∑
r∈Np

(fr − wr − up)2)
+ β

(
(∂xup − hp)2 + (∂yup − vp)2), (6)

where C(h, v) = #{p
∣∣|hp|+|vp| 6= 0} and β is an automatical-

ly adapting parameter to control the similarity between vari-
ables (h, v) and their corresponding gradients.

The minimization problem (6) is separated into three sub-
problems w.r.t. u, w and (h, v) as follows

¬ u-sub problem: for given w and (h, v)

min
u

∑
p

(fp − up − wp)2 +
α

NR

∑
p

( ∑
r∈Np

(fr − wr − up)2)
+β
(
(∂xup − hp)2 + (∂yup − vp)2) (7)

­ w-sub problem: for given u and (h, v)

min
w

∑
p

(fp − up − wp)2 + µ
∑
p

|∇wp|2

+
α

NR

∑
k∈Np

(
(fp − wp − uk)2) (8)

® (h, v)-sub problem: for given u and w

min
h,v

∑
p

(
(∂xup − hp)2 + (∂yup − vp)2)+

λ

β
C(h, v) (9)

3.1. Subproblem 1: computing u

The Euler-Lagrange equation of u-sub problem Eq. (7) gives
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us a quadratic function. Similar to [12], we use the Fast Fouri-
er Transform(FFT) to compute the solution of u as follows

u = F−1
( F(P ) + β(F(∂x)∗F(h) + F(∂y)∗F(v))

1 + α+ β(F(∂x)∗F(∂x) + F(∂y)∗F(∂y))

)
, (10)

where Pp = fp−wp + α
NR

∑
r∈Np

(fr −wr) for each single term

w.r.t. pixel p.

3.2. Subproblem 2: computing w

The optimal condition of w-sub problem Eq. (8) is obtained
by pursuing its Euler-Lagrange equation, which is given as
follows

(1 + α− µ∆)wp = (1 + α)fp −
(
up +

α

NR

∑
r∈Np

ur
)
, (11)

where ∆ is the Laplace operator. Similarly, the quadratic
function Eq. (11) can be solved efficiently by the FFT, i.e.,

w = F−1
( F(Q)

1 + α+ µF(∆)

)
, (12)

where Qp = (1+α)fp−up− α
NR

∑
r∈Np

ur for each single term

w.r.t. pixel p.

3.3. Subproblem 3: computing (h, v)

The subproblem Eq. (9) is firstly rewritten as∑
p

min
hp,vp

{
(hp − ∂xup)2 + (vp − ∂yup)2 +

λ

β
H(|hp|+ |vp|)

}
,

where H(|hp|+ |vp|) is a binary function returning 1 if |hp|+
|vp| 6= 0 and 0 otherwise. Each single pixel preaches its min-
imum under the condition

(hp, vp) =

 (0, 0) (∂xup)
2 + (∂yup)

2 ≤ λ

β
,

(∂xup, ∂yup) otherwise.
(13)

3.4. Algorithm
We present the alternative algorithm for the proposed model
Eq. (5) in Algorithm 1. In numerical implementations, the β0
and βmax are fixed values 2λ and 1E10, respectively. The γ
is set to 1.01, which is tunable to the increase of the β.

Algorithm 1 L0 Regularized Mumford-Shah Model
Input: image f , parameters µ, λ, β0, βmax and rate γ
Initialization: w ← f , h← ∂xu, v ← ∂yu, β ← β0, i← 0
repeat

– With w(i) and h(i), v(i), solve for u(i) in Eq. (10);
– With u(i), solve for w(i) in Eq. (12);

– With u(i), solve for h(i)p and v(i)p in Eq. (13);
– β ← γβ; i← i+ 1.

until β ≥ βmax

Output: Specify K and implement the K-means method to
u(i).

4. NUMERICAL EXPERIMENTS
In this section, we compare the SBCIS model with the TSMS
model in order to demonstrate the advantages of the SBCIS
model in dealing with intensity inhomogeneity.

4.1. Two-phase segmentation
Example 1: Synthetic images. Fig. 2(a) are two test images
seriously affected by intensity inhomogeneity due to nonuni-
form illumination. As shown in Fig. 2(d), the proposed al-
gorithm performs very well in handling the inhomogeneity
while some part of the foreground from the TSMS model is
incorrectly identified as the background as shown in Fig. 2(e).

(a) Input (b) u (c) w (d) Our result (e) TSMS

Fig. 2. Applications to natural images.

Example 2: Natural images with noise. Two widely used
natural images with intensity inhomogeneity are tested. We
add Gaussian zero mean noise with the standard deviation 20
to the test image “rice” and “coins” in Fig. 3(a) to verify
the performance of the proposed model in removing noises.
Compared to the results of the TSMS model, our model can
identify the complete boundaries of the objects contained in
test images.

(a) Input (b) u (c) w (d) Our result (e) TSMS

Fig. 3. Applications to noisy images.

Example 3: Vessel images. For vessel images in Fig. 4(a)
obtained from [13], the intensity inhomogeneity is obvious
as some parts of the vessel boundaries are quite weak. By
successfully eliminating the effect of bias field, our model can
correctly identify the vessels, while the TSMS model fails to
do so. Besides, it is shown in Fig. 4(c) that the estimated bias
fields keep smooth in the image domain.

4.2. Multi-phase segmentation
Example 4: CT angiography images. We apply the methods
to 2D maximum intensity projection (MIP) images of a real
3D CT angiography data shown in Fig. 5(a). We implement-
ed three-phase segmentation models to extract the vascular
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structures from the given MIP images. The segmentation re-
sults of the vessel phase (phase 1) containing the aorta and a
branch of coronary artery from the proposed model and TSM-
S model are displayed in Fig. 5(d) and Fig. 5(e), respectively.
It is shown that our model can identify the vascular structures
from the background accurately.

(a) Input (b) u (c) w (d) Our result (e) TSMS

Fig. 4. Applications to real blood vessel images.

(a) Input (b) u (c) w (d) Our result (e) TSMS

Fig. 5. Applications to CT angiography MIP images.

Example 5: Brain MR images. The original test MR im-
age acquired from a 3T scanner is shown in Fig. 6(a), where
the inhomogeneity can be clear seen. In the bias corrected im-
age shown in Fig. 6(b), the intensities within each tissue be-
come quite homogeneous. The segmented results are shown
in each phase in Fig. 6(c), (d) and (e), respectively.

To quantitatively evaluate and compare the proposed
method and the TSMS model, we use the synthetic MR im-
ages with ground truth from BrainWeb: http://www.bic.mni.m
cgill.ca/brainweb/. Both 7% of noise and 20% of intensity
non-uniformity (INU) are added to the test image. Besides,
we added a productive bias field to the test image to enhance
the intensity inhomogeneity as shown in Fig. 7(a). The seg-
mentation results of the proposed method and TSMS model
are given in Fig.7. The performance precision and sensitivity
for our model and the TSMS model are listed in Table 1. It

can be seen that both precision and sensitivity of the proposed
method are higher than the TSMS model.

(a) Input (b) f − w (c) Phase 1 (d) Phase 2 (e) Phase 3

Fig. 6. Applications of our method to a 3T MR image.

(a) Input (b) u (c) w

(d) Our phase 1 (e) Our phase 2 (f) Our phase 3

(g) TSMS phase 1 (h) TSMS phase 2 (i) TSMS phase 3

Fig. 7. Segmentation results for a synthetic MR image.

Table 1. Precision (P%) and sensitivity (S%) of brain MR
image.

Phase 1 Phase 2 Phase 3
P% S% P% S% P% S%

TSMS 89.86 80.25 72.19 78.12 69.67 83.64
SBCIS 93.68 94.30 88.00 86.84 77.52 82.86

5. CONCLUSION AND FUTURE WORKS

We have presented an efficient model for the simultaneous bias cor-
rection and image segmentation by modeling the image as a product
of true image intensities and a smooth bias field. We applied the L0

gradient minimization to enforce the true intensities to be piecewise
constant. In addition, a neighbor term was introduced to compel the
piecewise constant intensities towards homogeneity. Numerical ap-
plications indicate that our method is able to capture bias of quite
general profiles and can be used for images of various modalities.
However, the objective functional in our work is non-convex due to
the L0 minimization, which may make the solution trapped into a
local minima. Therefore, one possible future work is to extend the
idea to convex variants of the Mumford-Shah model.
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