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ABSTRACT

An objective blurriness model is useful in various image process-
ing applications. Especially, a no-reference model is expected as a
highly desirable approach due to its applicability to wide range of
applications. Blurriness of an image is known as to be commonly
induced by the attenuation of spatial high-frequency and thus most
conventional researches focused on a model estimating the amount
of spatial high-frequency. However, the human-perceived blurriness
might be varied across image contents. Very few researches have
been investigated the human visual system model for the blurriness
perception. To address the lack of an efficient model, this paper
presents the blurriness perception model designed as a spatially vary-
ing function based on the inherent sharpness. Pixel-wise perceptual
blurriness is computed employing the blurriness perception model
and then integrated into an overall blurriness index using saliency
information. The experimental comparisons with state-of-the-arts
blurriness models for extensive public databases show that the pro-
posed model is well-correlated with the subjective scores across dif-
ferent content of images, and outperforms the compared models.

Index Terms— inherent sharpness, perceptual blur model, no-
reference, blurriness perception model

1. INTRODUCTION

The ability to quantify the perceived blurriness of an image is useful
in various image processing applications, such as super-resolution,
deblurring, and image fusion [1, 2, 3]. For example, an objective
blurriness index can be used to adjust parameters or iterations in
deblurring algorithms. Blurriness score is also availabe to ascertain
the overall quality of an image possibly combined with other factors
[4, 5].

A subjective human assessment is considered the most reliable
method for evaluating the perceived blurriness of an image, since hu-
man beings are commonly end users in many applications. However,
subjective methods are very time-consuming and expensive, and thus
are impractical for real-time applications. Instead, an objective as-
sessment has been expected to substitute for a subjective method due
to its low-complexity and consistency. Based on the amount of ref-
erence information needed, objective image quality assessments are
classified into three categories: full-reference, reduced-reference,
and no-reference methods [6]. The no-reference method, among
them, is the most desirable approach since in many applications the
reference image is unavailable.

It is well known that the attenuation of high-frequency elements
causes an image to appear blurred, i.e., the degree of a perceived
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blurriness is inversely proportional to the amount of spatial high-
frequency. However, the human visual system (HVS) differently per-
ceives the blurriness of images containing the same amount of spatial
high-frequency across image contents. Given the phenomenon, the
perceptual blurriness, B, can be modeled as B = Ψ

(
|eh|a

)
where

eh is spatial high-frequency elements, |·|a means the amount of eh,
and Ψ is the HVS model for blurriness perception.

In recent decades, a lot of no-reference blurriness models have
been proposed. Majority of the models were only focused on es-
timating |eh|a and did not consider the HVS, i.e., the function Ψ
is assumed as a trivial linear function. To estimate |eh|a, deriva-
tive information was used in the electron microscopy field [7], and
also employed in more recent literature [8, 9]. Edge information,
especially the width of an edge, is also employed as a key factor to
estimate the amount of high-frequency |eh|a [5, 10, 11]. |eh|a can
be estimated in a transform domain, for example, the method pre-
sented in [12] is based on the summation of frequency component
magnitudes above a threshold. In [13], |eh|a is measured using dis-
crete cosine transform (DCT) coefficient that are close to zero. In
[14, 15], a kurtosis in the frequency domain, which is a statistical
measure of the peakedness of a distribution, is employed as an index
for estimating |eh|a.

These approaches can estimate blurriness well within a single
image content, but cannot be applicable for image-across blurriness
estimation because HVS-perceived blurriness is varied according to
the content of an image. To address this problem, a few number of
studies explored the HVS model Ψ for the blurriness perception.
Ferzli and Karam [16] proposed a probability summation model
based on the concept of just noticeable blur (JNB) as Ψ. The per-
ceived sharpness1 is estimated by integrating local blurriness scores
with the JNB model. Several extensions of this method [17, 18] have
been studied in order to settle its defects. In [17], the authors pro-
posed an iterative edge refinement algorithm to solve the inaccuracy
problem for over-blurred images. In [18], Narvekar et al. utilized a
probabilistic model to estimate the probability of detecting blur at
each edges in an image. Then, a blur index was computed by pool-
ing the probabilities at each edges via the cumulative probability of
blur detection (CPBD) method.

Even though edge information is a good index for measuring
blurriness, the use of these algorithms is limited since edges are re-
markably different from image to image. Especially, their perfor-
mance drastically decreases for edgeless images. In our previous
work [19], a sharpness index was proposed based on the image con-
tent adaptive Ψ model. However, in [19], local characteristics of an
image were not considered; instead, only global features were used
to estimate the perceived image sharpness. Similar to [19], most

1Sharpness is the antonym of blurriness and in common inversely propor-
tional to blurriness.
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blurriness models are suitable for quantifying the overall blurriness
of an image, not for providing local blurriness map2, which is useful
in certain applications [20].

Based on the concept of inherent sharpness presented in [19],
we model Ψ as a spatially varying function which depends on im-
age contents, named as inherent sharpness model (ISM). Percep-
tual pixel-wise blurriness is computed using ISM and |eh|a esti-
mated in wavelet domain. The pixel-wise blurriness are integrated
into an overall image blurriness index with visual saliency informa-
tion. Also, this pixel-wise blurriness map has potential to be used in
space-variant image processing. The remainder of this paper is orga-
nized as follows. Section 2 describes the proposed model in detail.
Section 3 presents experimental evaluations of the proposed method
with comparisons to state-of-the-art methods, and discusses about
possible applications. Lastly, Section 4 concludes this paper with
future works.

2. NO-REFERENCE PERCEPTUAL BLUR MODEL
BASED ON INHERENT SHARPNESS

As described in the previous section, the perceptual blurriness,
B, can be modeled as B = Ψ

(
|eh|a

)
where eh is spatial high-

frequency elements, |·|a means the amount of eh, and Ψ is the
HVS model for the blurriness perception. This section describes
how the proposed no-reference blur model estimates B in detail. In
the method, |eh|a is estimated using diagonal-detailed sub-signal
in wavelet domain and Ψ is modeled using the concept of inherent
sharpness and visual saliency information. First, pixel-wise spatial
high-frequency elements |eh(p)|a for each pixel position p is com-
puted in wavelet domain. Second, pixel-wise perceptual blurriness
b(p) are computed with ISM. Lastly, b(p) are integrated into an
image blur index using visual saliency s. Detailed descriptions for
each steps are given in the followings.

To study how the HVS perceives blurriness (or sharpness) across
image contents, in our previous work [19], subjective experiments
were conducted with various spatial complexity of images. In the
experiment, six images selected from LIVE image database [21]
were cropped into smaller ones (255 by 175) to obtain test images
containing different complexity: three of test images have low spa-
tial complexity while the other three have high spatial complexity.
The undistorted images were blurred by a 7×7 Gaussian kernel with
standard deviations of 0.5, 1.0, 1.5, 2.0 and 2.5. 36 test images
were used overall for the experiment. 15 subjects evaluated test im-
ages in terms of sharpness using the absolute category rating (ACR)
with five grades: very blurred, blurred, non-blurred, sharp, and very
sharp. Then 15 scores for each image were averaged to obtain mean
opinion scores (MOS).

The results of the experiment are shown in Fig. 1, which de-
scribes a relationship between |eh|a and the perceived sharpness
(MOS) for different complexity of images. Here, |eh|a was com-
puted by the L2 norm of high-frequency above the cutoff frequency
of π/8 in Fourier domain. As shown in Fig. 1, the perceived sharp-
ness increased, as |eh|a incremented, within an image group for
both low complexity images and high complexity images. How-
ever, across image complexity, the perceived sharpness discrepancy
is induced by the fact that an image complexity itself influences on
the perceived sharpness. We define the factor causing the perceived
sharpness discrepancy as inherent sharpness. If inherent sharpness

2Although it is possible to modify existing blurriness models to generate
a blurriness map in a block-based method, the accuracy and reliability are
very limited [20].

Fig. 1. Relationship between |eh|a and the perceived sharpness
(MOS) for different image groups of low and high spatial complexity

term, which is content dependent, is eliminated, only a content inde-
pendent factor is remained. The content independent factor is named
as perceptual blurriness b and computed by ISM as follows:

b(p) =
χ(p)

|eh(p)|a + c
, (1)

where c = 0.01 is a constant for stability and χ(p) is the function
for measuring a spatial complexity of an image. Gaussian weighted
morphological gradients is used as χ(p) in this paper, but any proper
function can be used. χ(p) is defined as follows:

χ(p) =
∑

p∈Wχ

g(p) ·m(p), (2)

m(p) = max Ω(p)−min Ω(p), (3)

Ω(p) =
{
X(p + ∆)|∆ ∈ N2, |∆| ≤ 1

}
, (4)

where g(p) is Gaussian weight, m(p) is a morphological gradient,
Wχ is a 64×64 window, and X is an input image.

In the proposed method, pixel-wise spatial high-frequency
|eh(p)|a is computed in wavelet domain. The wavelet transform
is an effective way to determine both spatial and frequency prop-
erties and thus is suitable for estimating pixel-wise high-frequency
information. |eh(p)|a is defined as follows:

|eh(p)|a =
∑

p∈Wω

g(p) · ωD(p), (5)

where g(p) and Wω are Gaussian weight and a 64×64 window, re-
spectively. ωD is a diagonal detailed wavelet sub-signal defined as
follows:

ωD(p) =
∑
n

ϕD(p) ·X(n), (6)

where ϕD is a diagonal wavelet function composed of two impulse
responses of horizontal and vertical high-pass filters. Note that the
Haar wavelet is used in this paper due to its simplicity, but any alter-
ative wavelet can be used if it can provide diagonal elements.

The HVS generally lends more attention to salient regions, such
as an edge, a local contrast, and an object [22]. Thus, distortions
presented in attended regions are more frequently perceived by the
HVS. We used such saliency information to derive an overall blur-
riness index of an image from the local blurriness scores. In this
paper, graph-based visual saliency (GBVS) [23] is employed. A
bottom-up visual saliency model, GBVS, is based on random walks
on the graphs constructed using the edge strengths between two
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(a) butter flower (b) monarch

(c) lady liberty (d) turtle

Fig. 2. Local perceptual blurriness maps for images contain-
ing spatially varied blurriness: (a) butter flower, (b) monarch, (c)
lady liberty, and (d) turtle.

nodes. Note that any other visual saliency model (e.g. [24, 25])
can replace the GBVS in the proposed model if it can provide a
pixel-wise saliency map.

The perceptual blurriness index B of an image is computed us-
ing pixel-wise perceptual blurriness b(p) and pixel-wise saliency in-
formation s(p) as follows:

B = log10

(
K ·

∑
p

b(p) · s(p)

)
, (7)

whereK =
∑
p

s(p) is a normalization factor. Logarithmic mapping

is employed in (7) in order to account for the nonlinear perception in
HVS. Substituting for b(p) in (7) from (1) one obtains

B = Ψ(|eh|a)

= log10

(
K ·

∑
p

χ(p)
|eh(p)|a+c

· s(p)

)
. (8)

where χ(p) and |eh(p)|a are computed by (2) and (5), respectively.
B increases as blurriness of an image rises and is always nonnega-
tive, i.e., a value of that is closer to zero indicates a sharper image.
The MATLAB implementation of the proposed model is available in
[26].

3. PERFORMANCE EVALUATIONS AND APPLICATIONS

This section presents the experimental results for the proposed per-
ceptual blur model and discusses about other applications. The per-
formance evaluation in assessing blurred image quality using six
publicly available image databases is given in Section 3.1, and possi-
ble applications of the proposed blur model are discussed in Section
3.2.

3.1. Quality assessment of blurred images

To evaluate the performance of the proposed model in assessing
the quality of blurred images, six public image databases, DIML
[19], LIVE [21], TID2008 [27], IVC [28], CSIQ [29], and A57 [30]
databases were used. The DIML database [19] consists of ten origi-
nal images and 150 distorted images by JPEG-2000, Gaussian blur,
and motion blur at five distortion levels. The subjective experiments
were conducted according to ITU-R BT.500 recommendations [31].

In the experiments, ten subjects graded each image in terms of the
perceived sharpness using continuous scale. Test images were ran-
domly displayed on a LG FLATRON E2350 high-resolution LCD
monitor, and the final MOS for each image was computed by aver-
aging the grades given by ten subjects. All the images, including
the Gaussian blurred, motion blurred, and JPEG-2000 compressed
images, were used in our experiments.

The LIVE [21] database consists of 29 original color images and
982 distorted images. The distortion types are JPEG-2000, JPEG,
Gaussian blur, white noise, and transmission error. The subjective
experiments were conducted using a continuous linear scale with 20-
29 subjects. The difference mean opinion score (DMOS) for each
image was then calculated from the raw scores. All of the Gaussian-
blurred images (174 images) and all of the JPEG-2000 compressed
images (227 images) from the LIVE database were used in our ex-
periments.

The TID2008 database [27] consists of 25 original images and
1700 distorted images. The distortion types comprise 17 different
distortions at four distortion levels, including JPEG-2000, Gaussian
blur, denoising, JPEG, impulse noise, and mean shift. In our ex-
periments, all of the Gaussian blurred natural images (96 images),
all of the JPEG-2000 compressed natural images (96 images), and
all of the denoising natural images (96 images) from the TID2008
database were used.

The IVC database [28] consists of 10 original images and 235
distorted images. The distortion types are JPEG, JPEG2000, Lo-
cally Adaptive Resolution (LAR) coding, and Gaussian blurring.
The subjective experiments were conducted using a double stimu-
lus impairment scale method (DSIS) with fifteen subjects. In our
experiments, all of the Gaussian-blurred images (24 images) and all
of the JPEG2000 compressed images (60 images) were used.

The CSIQ database [29] consists of 30 original images and
866 distorted images. The distorted images comprise six different
types of distortions at four to five distortion levels, including JPEG,
JPEG2000, global contrast decrements, additive white Gaussian
noise, additive pink Gaussian noise, and Gaussian blurring. Twenty-
five subjects participated in the subjective experiments. All of the
Gaussian blurred images (180 images) and JPEG-2000 compressed
images (180 images) were used in our experiments.

The A57 database [30] consists of 3 original images and 54 dis-
torted images. The distortion types are JPEG, JPEG-2000, addi-
tive white Gaussian noise, Gaussian blur, Dynamic Contrast-based
Quantization (DCQ), and LH sub-bands quantization. The subjec-
tive experiments were conducted using a continuous scale in which
each distorted image was rated against the original image. In our
experiments, all of the Gaussian blurred images (ten images), all of
the JPEG-2000 compressed images (ten images) and all of the DCQ
compressed images (ten images) were used.

The distortion types of the blurred test images are Gaussian blur
(534 images), JPEG-2000 compression (623 images), motion blur
(50 images), DCQ compression (10 images), and denoising (96 im-
ages). In all, 1313 images are employed in our evaluation. For the
evaluation, we follow the suggestions of the VQEG report [32]. A
four parameter logistic function, as recommended in [32], is used for
non-linear regression before calculating the performance measures.
The logistic function used is as follows:

MOSpi =
β1 − β2

e(Si−β3)/|β4| + 1
+ β2, (9)

where β1, β2, β3, and β4 are model parameters, MOSpi is the pre-
dicted MOS, and Si is the score of the model. The values of β1,
β2, β3, and β4 are first obtained by fitting to the corresponding sub-
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Table 1. PCC comparisons for each database. The bold numbers indicate the top and the second highest PCCs for each database.
Database Proposed GISM [19] JNBM [16] EWM [5] CPBD [18] DCT [13] Kurtosis [14] EPM [15]

DIML 0.918 0.892 0.742 0.751 0.886 0.721 0.868 0.720

LIVE 0.893 0.810 0.785 0.814 0.905 0.824 0.818 0.834

TID2008 0.894 0.886 0.848 0.846 0.885 0.839 0.856 0.763

IVC 0.879 0.782 0.606 0.586 0.755 0.724 0.691 0.823
CSIQ 0.871 0.776 0.825 0.841 0.859 0.834 0.813 0.810

A57 0.835 0.784 0.834 0.792 0.734 0.722 0.813 0.675

Average 0.738 0.641 0.674 0.677 0.646 0.664 0.704 0.621

jective MOS scores, and then MOSpi is calculated. The MOSpi
are used in calculating the performance measures, including Pear-
sons correlation coefficient (PCC, which indicates the prediction ac-
curacy), the Spearman rank-order correlation coefficient (SROCC,
which indicates the prediction monotonicity), the root mean squared
error (RMSE, which indicates the prediction consistency), and the
mean absolute error (MAE, which indicates the prediction consis-
tency). Note that for a well-designed model, the values of PCC and
SROCC should be high, and the values of RMSE and MAE should
be low.

The proposed model is evaluated by comparisons with several
no-reference blurriness/sharpness measuring models: the global
inherent sharpness based model (GISM) [19], just noticeable blur
based model (JNBM) [16], edge width based model (EWM) [5],
cumulative probability of blur detection based model (CPBD) [18],
DCT based model (DCT) [13], kurtosis based model (Kurtosis) [14],
and edge profile based model (EPM) [15].

Tables 1 summarizes PCC comparisons of the models for each
database. As seen in Table 1, the proposed model shows good per-
formance for all the databases, and outperforms the other models for
most cases. Actually, the proposed model provides the highest cor-
relations for all databases except for LIVE database (the second-top
performance for LIVE database). The objective performance mea-
sures (PCC, SROCC, RMSE, and MAE) for all the images from six
databases are presented in Table 2. PCC, SROCC, RMSE, and MAE
in Table 2 are average of values for each database. The proposed
model shows the highest PCC and SROCC, which indicate the pre-
diction accuracy and monotonicity. Although RMSE and MAE of
the proposed model are not the lowest, the performance is still com-
petitive. More comparisons analyzing the performance for each dis-
tortion type were provided in supplementary document at [26]. The
experimental analysis shows that the proposed model is reliable and
consistent with correlating well to subjective scores, thus can be con-
sidered as an effective perceptual blurriness index in no-reference
applications.

3.2. Other applications

Besides application to the quality assessment of blurred images, the
proposed model is useful for other tasks: general image quality as-
sessment with other distortions, local blurriness prediction, and spa-
tial variant image processing. Blurriness is the most common dis-
tortion in typical image processes, such as acquisition, compression,
denoising, up-sampling, and so on. Nevertheless, other distortions
can occur in several applications. For example, the blocking arti-
fact is one of the dominant distortions in JPEG compressed images
[33], while the ringing artifact is one of the dominant distortions in
JPEG-2000 compressed images [34]. Gaussian noise and pack-loss

are also typical distortions that generally occur in image transmis-
sion [35]. Accordingly, the perceptual blurriness measured using
the proposed model can be used to predict the perceptual quality of
images with combined to other distortions.

Furthermore, the proposed model can provide a local blurriness
map which is useful for a variety of applications, e.g., locally adap-
tive deblurring [36], multi-focus image fusion [37], and the classifi-
cation of blurry or non-blurry regions [38, 39]. In Fig. 2, local per-
ceptual blurriness maps for images containing spatially variant blur-
riness are presented in which brighter pixels represent more blurred
regions. In the figures, sharp foreground objects are clearly distin-
guished from the blurry background scenes. The results imply that
blurriness maps can be used to classify an image into blurry or non-
blurry regions. The local blurriness can also be used as one of the
features in an image segmentation algorithm. Also, locally adaptive
image processing such as deblurring and enhancement can be con-
ducted with the local blurriness map.

4. CONCLUSION

This paper proposes an objective no-reference perceptual blur model
employing HVS perception model designed using ISM and visual
saliency. Pixel-wise perceptual blurriness is computed by ISM and
diagonal wavelet sub-signal, then integrated into overall blurriness
index with visual saliency. An experimental analysis of the pro-
posed method for extensive public databases shows that the proposed
model performs well in assessing the quality of blurred images and
outperforms the compared state-of-the-art models. Furthermore, the
proposed method provides a local blurriness map which is useful
for many applications, such as locally adaptive image processing,
blurry region detection, and multi-focus image fusion. Future works
include extending the proposed model to stereo images considering a
binocular perception of blurriness. Other directions for future works
include the development of spatially adaptive deblurring and blurry
region-based image segmentation.

Table 2. PCC, SROCC, RMSE, MAE comparisons for all images
from six databases. The bold numbers indicate the top performance.

PCC SROCC RMSE MAE
Proposed 0.851 0.839 6.99 5.73

GISM [19] 0.805 0.792 6.99 5.51
JNBM [16] 0.748 0.715 6.73 4.46
EWM [5] 0.754 0.743 5.76 4.24

CPBD [18] 0.820 0.801 5.50 5.04
DCT [13] 0.762 0.744 6.11 6.08

Kurtosis [14] 0.795 0.735 4.72 3.72
EPM [15] 0.750 0.721 5.49 4.34
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