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ABSTRACT

The present paper deals with the estimation problem of the

Ising field parameter and extends a previous one [1]. It pro-

poses an estimate from indirect observation (incomplete and

noisy), whereas the previous paper proposed an estimate from

direct observation (complete and noiseless). Both of them

are based on an explicit expression for the partition function,

known for a long time [2] but, to the best of our knowledge,

never used for parameter estimation (except in our previous

paper [1]). Both of them are developed in a Bayesian frame-

work. In our previous study (direct observation), the posterior

law is explicit but in the present case (indirect observation)

the posterior law is not explicit due to the hidden structure.

The proposed approach relies on a full Bayesian strategy and

a stochastic sampling algorithm (Gibbs sampler including a

Metropolis-Hastings step) for posterior exploration. The pa-

per proposes a numerical evaluation of the proposed method.

Index Terms— Ising field, parameter estimation, incom-

plete data, hidden variable, Bayesian, partition function.

1. ISING FIELD AND UNSUPERVISED INVERSION

Over the past decades, Bayesian methods for ill-posed im-

age reconstruction problems have become increasingly popu-

lar because they are able to coherently account for both mea-

surements and image properties. Within this framework, we

are interested in advanced problems of joint reconstruction-

segmentation, i.e. including a segmentation operation jointly

performed with the reconstruction. To this end, methods re-

sort to the Ising / Potts model for region labels (introduced in

[3, 4] for segmentation). Such reconstruction-segmentation

problems have recently been adressed and solutions have been

proposed based on this model [5, 6, 7, 8].

Anyway, the complete solution requires the adjustment

of the Ising / Potts field parameter. The generally investi-

gated solutions for Markov field parameter estimation resort

to statistics [9, Part.VI], [10, Ch.8] whether the field is di-

rectly or indirectly observed. They are potentially powerful

but they come up against two major difficulties related to the

explicitation of the observation law.

1. The partition function of the field. For general random

fields, the partition function is in unknown relation

with the field parameter. Nevertheless, there are three

specific cases where this is not: (1) the well-known

Gaussian field, (2) a class of non-Gaussian fields based

on continuous mixture of Gaussians, recently pro-

posed [11] and (3) the Ising field, of interest here. For

the latter, the partition is explicitly known from [2],

but surprisingly, a certain part of the image processing

and computer science literature seems unaware of its

existence. Moreover, to the best of our knowledge, it

has never been used in parameter estimation methods

(except in our previous paper [1]).

2. The marginalization over the unobserved field. When

the field is directly observed, the parameter likelihood

(in a standard sense or in a non-Bayesian sense) is avail-

able and [1] is devoted to this case. When the field is

indirectly observed, the observation law is based on the

marginalization of the unobserved field. Except for rare

cases (e.g. Gaussian), it is a difficult task, for general

field structure and observation scheme. In the case of

the Ising field, the marginalization is impossible. More-

over, general tools, such as the class of Expectation-

Maximization schemes are untractable in this case. We

resort to a full Bayesian strategy and a stochastic sam-

pler for posterior law exploration.

The paper is organized as follows. Section 2 introduces

the notations, the Ising model including its partition function

and the observation scheme. Section 3 proposes the parame-

ter estimation method and the developed algorithm. They are

numerically illustrated and evaluated in Section 3.3. Conclu-

sions and perspectives are delivered in Section 4.

2. ISING FIELD AND OBSERVATION SCHEME

2.1. The Ising field and partition function

The homogeneous Ising field is a binaryMarkov random field

driven by a unique parameter β ∈ R+. Here, it is considered
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on a finite N ×N regular lattice, with P = N2 sites, and de-

noted byX =
[

Xs , s ∈ N
2
N

]

, where NN = {1, 2, . . . , N}.
The probability for a configuration x0 writes:

Pr [ X = x0 |β ] = ZP (β)−1 exp [ 2Pβ ρ (x0)] . (1)

From a statistical standpoint, the law is clearly in the expo-

nential family: β is the natural parameter and ρ (x) is a suffi-
cient statistic. It describes the neighborhood structure and the

pixels interactions:

ρ (x) =
1

2P

∑

r∼s

δ (xr, xs) ,

where δ (x, y) is 1 if x = y and 0 otherwise and the∼ symbol
stands for neighbor relationship in a 4-connexity system.

The keystone for the inference on β is the partition func-

tion ZP (β) involved in Eq. (1). It is given by a formidable
summation over the 2P possible configurations of the field:

ZP (β) =
∑

x

exp [ 2Pβ ρ (x) ] . (2)

Its theoretical calculation seems a desperate task, however, a

salient contribution due to Onsager [2] provides the result for

both infinite and finite lattices. Starting from Onsager’s paper

and other literature [12], it has been a task to drive out the

partition function. It is given and studied in our previous pa-

per [1]: the huge summation of Eq. (2), becomes a one dimen-

sional finite short summation, which is considerably simpler

and enables the subsequent developements.

2.2. Observation scheme

We are interested in a standard scheme of hidden Markov

fields: the field X is indirectly and incomplitely observed.

The observed field is denoted by Y and it is defined over a

set of sites denoted by S. The observation scheme is defined
by the set of probabilities Pr [ Y |X ] for each configuration
of the hidden fieldX and the observed field Y .

The case of interest is a separable perturbation, that is to

say: Pr [ Y |X ] is the product of the Pr [ Ys |Xs ]. Moreover,
it is defined by an error probability π, such that:

Pr [ Ys = x |Xs = x ] = 1 − π (3)

Pr [ Ys 6= x |Xs = x ] = π (4)

for all observed site s ∈ S. In other words: each variable Ys

is the variable Xs swapped with probability π. As a whole,

the probability for the entire observed field, given the hidden

field can be written

Pr [ Y = y |X = x , π ] = πQ exp [ π̄ ν(x, y) ] (5)

where π̄ = −logit [π], Q is the number of observed site (car-
dinality of S) and ν(x, y) =

∑

S
δ (xs, ys) counts the num-

ber of non swapped pixels (over the observed sites).

Y

πX

β

Fig. 1. Hierarchical structure, graphical model. β and π are

the parameters of interest, X is the hidden (Ising) field and

Y is the observed field.

2.3. Numerical example

This Section proposes a numerical example, for a size N =
32, a parameter value β⋆ = 0.8 and a probability π⋆ = 0.2.
An Ising configuration x0 is produced according to (1) by a

common parallel Gibbs sampler (in a chessboard-like man-

ner) and an observed configuration y0 is simulated according

to (3)-(4). The configurations are shown in Fig. 2.

(a) Hidden field (b) Observed field

Fig. 2. Hidden configuration x0 (left) and observed configu-

ration y0 (right). The gray pixels mark the unobserved sites

(about 10%). The field parameter is β⋆ = 0.8 and the error
probability is π⋆ = 0.2. Field size is N = 32.

3. PARAMETER ESTIMATION

3.1. Posterior density

This section tackles the estimation problem for (β, π) within
a Bayesian framework. It relies on the posterior density based

on the observation law and a prior density:

f (β, π |Y = y0) =
Pr [ Y = y0 |β, π ] f (β, π)

Pr [Y = y0 ]
. (6)

The used prior f (β) is uniform over finite interval [0, B].
Practically, we set B = 2: larger values of β are of no in-

terest since the field is quasi-surely in a uniform configura-
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tion. Regarding π, the used prior f (π) is uniform over [0, 1].
Moreover, β and π are a priori independent.

Remark 1 — It is possible to show an ambiguity between π

and 1 − π that is not explored in this paper.

The point is the observation law Pr [ Y = y0 |β, π ]. It is
built from the law for the hidden field (1) and the law for the

observation (5):

Pr [ Y = y0 |β, π ] =
∑

x

Pr [ Y = y0, X |β, π ]

=
∑

x

Pr [ Y = y0, |X, π ] Pr [ X |β ]

As mentionned in the introduction, there are usually two dif-

ficulties. The first one is related to the partition function of

the law for the hidden component Pr [ X |β ]. In the present
case, the partition is known (see section 2.1). The second dif-

ficulty is related to the marginalization, i.e. the summation

over all the possible configurations of the hidden field. It is

not tractable neither theoretically nor numerically and we re-

sort to a sampling strategy.

3.2. Sampling the posterior density

This section describes a sampling method in order to explore

the posterior law of interest f (β, π |Y = y0). It is a usual
strategy [13, 14] based on the full posterior law for all the

unobserved quantities given the observed one:

Pr [ β, π, X |Y = y0 ] =
Pr [ β, π, X, Y = y0 ]

Pr [ Y = y0 ]

and the joint law writes:

Pr [ β, π, X, Y ] = Pr [ Y |X, π ]Pr [ X |β ]f (β) f (π)

and must be read in relation with the hierarchical structure

shown in Fig. 1. It is exactly known from the law for the

hidden field (1), the law for the observation (5) and the prior

laws for β and π.

Direct sampling seems unfeasible due to the intricate de-

pendence of the different variables. The proposed strategy

resorts to Monte-Carlo Markov Chain algorithms based on

Gibbs sampler. It iteratively samplesX , π and β under their

respective conditional probabilities:

• X ∼ X |Y , β, π. It is an inhomogeneous Ising field

that is itself sampled by means of a parallel Gibbs sam-

pler (in a chessboard-like manner).

• π ∼ π |Y , X, β ≡ π |Y , X . It is a Beta density

B(Q − ν(x, y) + 1, ν(x, y) + 1).

• β ∼ β |Y , X, π ≡ β |X . It is not a standard density
so direct sampling is impossible. We use a Metropolis-

Hastings sampling step with the prior as the proposal.
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Fig. 3. Chains (top) and histograms (bottom) of β (left) and

π (right).

3.3. Simulation results

In order to monitor convergence, the empirical averages

of the generated samples (for β and π) are recursively com-

puted. The algorithm is stopped when their variations become

smaller than a given threshold T . In the presented example

T = 10−5 and the algorithm produced 11086 samples. The

first 2000 samples are shown in Fig. 3: after about 500 itera-

tions (burn-in time) the parameters are stabilized and seem to

be under the stationary law of the chain, i.e. the posterior.

The iterates are also shown in Fig. 3 as histograms:

they are representative of the marginal posterior densities

f (β |Y = y0) and f (π |Y = y0). They are also plotted
in Fig. 4 as 2-D histogram: it is representative of the joint
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Fig. 4. 2-D histogram representative of the joint posterior

f (β, π |Y = y0). Vertical axis β and horizontal axis π.
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True Mean Std Deviation Error

β 0.8 0.7394 0.0606 7.5%

π 0.2 0.1776 0.0325 11.2%

Table 1. Numerical results.

posterior density f (β, π |Y = y0).
The considered point estimate is the Posterior Mean and

the Posterior Standard Deviation is also computed. Results

are given in Tab. 1: the observed error is relatively small

(7.5% and 11.2% for β and π respectively). Anyway, an im-

portant point is that the method provides an idea of the uncer-

tainties via the posterior standard deviation: it is shown, on

this example, that each true value is inside the one standard

deviation interval around the estimated value.

Remark 2 — It requires about one minute to compute1 the

whole set of samples, i.e. to explore the posterior density and

deduce the point estimates and standard deviations.

4. CONCLUSION

This paper provides an advance in the area of Ising field ma-

nipulation and possible use for unsupervised image process-

ing, reconstruction and segmentation. It focuses on a para-

metric estimation problem from indirect observation (incom-

plete and noisy). The problem presents two major difficulties

related to the explicitation of the observation law: the first

one is related to the partition function and the second one is

related to the marginalization.

The estimate is developed in a full Bayesian framework

for the Ising field parameter and the noise parameter. The

proposed strategy is based: (1) on the exact law for the field,

thanks to the exact partition function and (2) on marginaliza-

tion through stochastic sampling (Metropolis-Hastings within

Gibbs). The posterior mean and standard deviation are com-

puted for both parameters.

The explicit expression for the partition function has been

known for a long time [2] but to the best of our knowledge it

has never been used for parameter estimation (except in our

previous paper [1]). The novelty of the present paper, with re-

spect to the previous one, is a methodological and algorithmic

solution for indirect observation.

The proposed work is limited to the Ising field itself and

it does not apply to the Potts field. A possible development

is to approximate the partition function of the Potts field

and to extend the present contribution. Another possible de-

velopement deals with the unsupervised aspect in Bayesian

reconstruction-segmentation method [5, 7, 8, 15], taking ad-

vantage of the present contribution.

1The algorithm is implemented within the environment Matlab on a PC

with a 3 GHz CPU and 3 GB of RAM. Code is about 100 lines long.
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