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ABSTRACT 

 

The paper reports on a novel method for reconstruction of cellular 

features including cell nuclei and cellular boundaries from actin 

tagged fluorescence confocal microscopy images. Such 

reconstruction can provide spatial context for subsequent 

quantitative analysis of changes to actin organisation and cell 

morphology in both controlled and stressed cell cultures. The 

proposed method is fully automatic and is formulated within active 

contour multiphase level set framework. The derived level set 

evolution PDEs combine previously proposed curvature and 

advection flows with propagation flow defined by specially 

designed set of geodesic distance maps. Additionally the proposed 

PDEs include additional components to impose known 

inclusion/exclusion topological constraints between cellular 

structures. The paper gives an overview of the proposed 

methodology as well as reports on initial results obtained for 

monolayer of human prostate cells (PNT2) culture visualised using 

acting tagged fluorescence confocal microscopy. 

 

Index Terms— cell segmentation, active contour, geodesic 

distance, confocal microscopy, topological constraints 

 

1. INTRODUCTION 

 

The segmentation of cellular structures is an essential task in cell 

imaging as it provides information about cell morphology. This in 

turn enables measurements which can be used in analysis of cell 

differentiation, lineage tree or can provide data to calculate a cell 

proliferation rate, to name a few. More specifically, the work 

presented in this paper has been carried out in a context of cell 

cytoskeleton organization analysis. The results of this research will 

facilitate a large scale investigation of effects ionising radiation 

insult has on cytoskeleton structure, which forms part of a research 

effort aiming at better understanding of cells bio-mechanical 

responses during cancer radiation therapy. The cytoskeleton and 

more specifically actin filaments are implicated in a number of 

cellular processes, including cell adhesion, locomotion, 

intercellular transport and general cell structural integrity. From 

this perspective the segmentation of the cellular structures provides 

spatial reference frame for analysis of cytoskeleton changes.  

The segmentation of nuclei and cell boundaries from actin tagged 

fluorescence confocal microscopy images is very demanding due 

to a highly complex actin appearance, high level of noise and 

strong non homogeneity of the intensity and gradient information 

of such images. The problem is further compounded by the 

missing, in places, indicators of cellular structures as well as 

presence of spurious indications of cell boundaries due to actin 

stress fibers forming, in monolayer cultures, in the intercellular 

spaces.  

To date there has been a rather limited number of methods reported 

in the literature addressing segmentation of cellular structures in 

fluorescence confocal microscopy images (FCMI). Whereas the 

most of the published techniques address the problem of nuclei 

segmentation [1-3], there are only a very few papers concerned 

with segmentation of cellular boundaries. Method proposed in [4] 

uses Riemannian metric defined on 2D image manifold to calculate 

Voronoi regions seeded at given nuclei position. Each such region 

represents subsequently segmented cell. The main problem with 

this method is lack of interaction mechanism between nuclei and 

cell boundary segmentation, leading to under or over estimations 

of cellular structures. In [5] authors proposed technique for cell 

segmentation in two-dimensional images with two-channels (actin 

and nucleus tagging). The method uses a multiphase level set 

combing the Chan-Vese and geodesic active contour (GAC) 

models together with repulsive force introduced to prevent 

segmented cells from overlapping. In [6] authors described a 

technique for three-dimensional cell segmentation from a single 

channel actin tagged FCMI. That method is based on a generalized 

version of the subjective surface technique [7] which is known to 

cope well with missing boundary information. 

As the methods described in [5], [6] the proposed in this paper 

algorithm also uses the level set framework. For each cell there are 

two level sets responsible respectively for segmentation of the cell 

boundary and nucleus. An evolution of each of these level sets is 

governed by a different PDE. Whereas the level sets representing 

nuclei are evolving according to a modified Chan-Vese model, the 

level sets representing cell boundaries use curvature and advection 

flow components derived from the GAC model together with a 

propagation flow calculated from a set of geodesic distance maps. 

Additionally each of the level sets interacts with the level set 

representing its own nucleus boundary and level sets representing 

boundaries of the neighboring cells. This additional interaction is 

introduced to preserve inclusion/exclusion topological constraints 

between cell nucleus and membrane and membranes of adjacent 

cells respectively. In this way the proposed method extends on the 

constraint proposed in [5] as that only included exclusion 

constraint. Additionally introduction of the geodesic distance maps 

makes the proposed method robust with respect to the missing 

boundary information. Although the method described in [6] has a 
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similar characteristic in terms of robustness to missing boundary 

information it is believed that the proposed here method copes 

better with actin stress fibers present in some monolayer cell 

cultures.  

The remaining of this paper is organized as follows: in section 2 

the data used in the experiments is introduced; section 3 explains 

different stages of the proposed segmentation algorithm whereas in 

section 4, results of the initial experimental validation of the 

method are presented; finally conclusions are drawn in section 5. 

 

2. FLUORESCENCE CONFOCAL MICROSCOPY IMAGES 

 

The data used in this paper was obtained from human prostate cells 

(PNT2) which were grown to confluence on glass coverlsips at 37 

°C/5% CO2 in modified Eagles Medium (MEM) supplemented 

with 10% bovine calf serum, 1% non-essential amino acids and 2 

mM L-glutamine containing penicillin (100IU/mL) and 

streptomycin (100µg/ml). Once confluent cells were fixed and the 

actin labelled with phalloidin-FITC according to the 

manufacturer’s instructions (Invitrogen, UK). All imaging was 

carried out using a Zeiss LSM510 confocal microscope. Figure 1 

shows an example of the acquired image stack of the monolayer 

PNT2 cell culture. The stack volume is defined on the 

512 512 98× ×  grid of voxels each 0.21µm 0.21µm 0.11µm× ×  in 

size.  
 

 
 

Fig. 1. Image stack showing monolayer of PNT2 cells. For the 

presentation purposes the data has been stretched along stack axis, 

by a factor of two to better visualise the structure of the data. 

 

3. ALGORITHM 

 

The proposed algorithm can be divided into two main processing 

stages. In the first preprocessing stage, which is data structure 

dependent, there are three steps: (i) estimation of the cellular 

background, (ii) selection of the central slide for algorithm 

initialization, and (iii) initial cell nuclei segmentation. In the 

second stage a specially designed multiphase level set active 

contours are simultaneously evolving to match cells’ nuclei and 

boundaries. The level set evolutions are initialized based on initial 

nuclei segmentation results obtained in stage 1. The second stage is 

independent of the data structure and therefore it can be used with 

data representing multilayer cell cultures.  

 

3.1. Image preprocessing 
The preprocessing stage starts with the segmentation of the cell 

background seen in vertical and horizontal images shown in 

Figure 1 as predominantly black area above and below the cell 

monolayer. Although there are number of different ways to achieve 

that objective, the algorithm implemented here is based on the 

geodesic distance as defined by Eq. 3 and explained in the next 

section. The only difference introduced specifically for the cell 

background segmentation is that in this case “R” is given as a 

single point in the centre of the last image in the data stack. All 

voxels with the value of this distance bellow predefined threshold 

are treated as cells’ background. The result of this operation, with 

the estimated cells background in white, is shown in Figure 2. 

 

 

 

 

 

 

 

Fig. 2. Slice through the image stack volume after cell background 

segmentation. The position of the shown slice is indicated in 

figure 1 by vertical line. 

 

The initial cell positions are estimated in the image selected as an 

equator slice through the monolayer, with the nuclei initial point 

positions, shown in Figure 3 as diamonds and pluses, estimated 

based on a simple thresholding. Both the slice and threshold 

selection is easily calculated from the 1D intensity profile obtained 

by accumulation of all the pixel intensities on each image slice. 

The detected points define a Voronoi diagram which in turn gives 

an estimated mapping for spatial cell occupancy, as shown in 

Figure 3. Only the cells for which Voronoi regions are completely 

included in the image are passed for further processing in the 

second stage.  
 

 
Fig. 3. Voronoi regions estimating initial cell positions, only 

regions marked by diamonds are further processed. Contours 

around centre of each Voronoi region show initial estimates of the 

cell nuclei.  

 

In the last step of the preprocessing the nuclei are pre-segmented 

using Chan-Vese method, Eq. (8), with ( )out k
µ  ( )in k

µ  calculated 

within the corresponding Voronoi region as explained in the next 

section. 
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3.2. Multiphase level set segmentation 
A generic form of the evolution equations used for segmentation of 

the cellular structures in the proposed method is given by [11],[12]: 

 
( )

( )
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t
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t

∂φ
= ∇φ + ∇φ

∂
x C

x
x  (1) 

where: ( , )tφ x  represents evolving level set function with 

{ }: ( , ) 0tφ >xx  defining inside region of a given cellular structure; 

( , ) ( , ) ( , ), ( , ) | ( , ) | ( , )·F t p t a t t t c t κ= + ∇φ ∇φ +x x x x x x
�

 is a 

velocity field with ( , )p tx , ( , )a tx
�

, ( , )c tx  representing 

respectively propagation advection and curvature flows with 

curvature κ  calculated as ( )( , ) | ( , ) |=div tκ t∇φ ∇φx x ; ( ; ( ))D tx C  

denotes an additional velocity/force field  introduced to preserve 

cells’ topological configuration and λ is a weighting factor. 

Eq. (1) has two different versions depending which cellular 

structure it is representing. Evolution equation for the level set 

representing k-th cell boundary, m(k), is derived from 

minimization of the following functional: 
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where: ( ) ( )D
f k

x  and ( ) ( )D
b k

x  are geodesic distance functions 

corresponding respectively to the foreground (inside) and 

background (outside) regions of the k-th cell. The foreground 

geodesic distance function is defined as: 

 ( )
( )

 1

 0
( ) inf ( ( ); )·| ( ) |

f k
f k

S
D G S p I S p dp

∈
′= ∫x

S

 (3) 

with ( )S p  representing an open curve with parameterization p 

normalized in the range of [0,1], i.e., 3: [0,1]S → ∈ ΩR  with Ω  

denoting the entire image domain and x denoting the coordinates 

of a point in that domain; 
( )f k

S  represents a set of curves that 

connect the point x and the region 
k

R  representing initially 

segmented k-th nucleus, i.e. ( )  { : (0)  and (1) }
kf k

S S S R= = ∈xS . 

The geodesic metric is calculated using: ( ; ) | * ( ) |
σ

G I I= ∇x xG , 

where 
σ

G is Gaussian smoothing kernel.  

Similarly the background geodesic distance function ( ) ( )D
b k

x  for 

the k-th cell is given by: 
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with ( ) { : (0)  an  (1 } d )
b ik

i k
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≠

= = ∈x ∪S , where the union 
k

i

i

R
≠
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is calculated over the image background region, detected in the 

first stage of the algorithm, and all initially detected cell nuclei 

expect the nucleus of the k-th cell.  

Since the geodesic metric ( ),G Ix  is nonnegative, the geodesic 

distance functions can be calculated by solving the following 

eikonal equations: 
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where ( ) ( ){ , }a f k b k∈ . An Efficient approach to numerically 

solve this type of equations can be found in [9]. 
By deriving the Gateaux derivative of the proposed functional (2), 

the implicit PDE, describing the evolution process of the level set 

function to achieve function minimization, can be expressed as: 
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The last term, weighted by a positive scalar α, is from the GAC 

model [10] used for accurate location of object boundary, wherein 

( )2
( ; ) 1 1 ( ; )g I βG I= +x x  is the implemented edge indication 

function. 

For practical reasons when selecting algorithm design parameters it 

is convenient for the propagation map to be normalised between -1 

and 1. For this reason ( ) ( )( ( ) ( ))
b k f k

D D−x x  propagation map in 

Eq (6) has been replaced with  

 
( ) ( )( )( , ) 2 atan ( ) ( )

b k f k
p t γD D π= ⋅ x xx  (7) 

where γ  controls “saturation point” of the propagation map. 

 

 
 

Fig. 4. Examples of the cells foreground and background geodesic 

distance maps ( ) ( )
f k

D x {a,d}, ( ) ( )
b k

D x {b,e} and corresponding 

propagation maps {c,f} as defined by Eq. (7) calculated for two 

different cells. Red crosses indicate initially estimated cell centers 

(see Figure 3). 

 

The evolution equation for the k-th nuclei, n(k), segmentation is a 

version of the Chan-Vese method: 

 ( ) ( )
( ) ( )( ) ( )

n 2 2

n

,
( ) ( ) | |

k

out k in k k

t
I µ I µ βκ

t

∂φ
= − − +− ∇φ

∂

x
 (8) 

where mean values ( )out k
µ , ( )in k

µ  are calculated within region 

( ){ }: ( , ) 0
m k

tφ >xx  representing evolving estimate of the k-th cell. 

As mentioned in section 3.1 the initial cell nuclei estimation uses 

the same model but with ( )out k
µ , ( )in k

µ  calculated within 

corresponding Voronoi region (see Figure 3). 

The additional forces, ( ; ( ))
k

D tx C , in Eq (1) are defined as: 

 ( ) ( )( ; ( )) (sdf ( ; )) (sdf ( ; ))i o

k k k
D t f M f M= − +x C x x  (9) 

(c) 

(f) 

(a) (b) (c) 

(e) (f) (d) 
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These forces are used in both, nuclei and cell boundary level set 

evolutions. Their role is to prevent evolving active contours from 

intersecting and therefore enforcing inclusion (nucleus to reside 

inside the cell boundary) and exclusion (any two different cells 

should not occupy the same space) constraints. In the proposed 

algorithm ( ) ( )2( ) expf x sign x x= −  what effectively means that 

these forces are activated only in the regions where contour is 

getting too close to its medial axis, ( )s

k
M , as measured by the 

signed distance function, ( )
sdf ( ; )

s

kMx , (index { },s i o∈  indicates 

if the medial axis is located inside or outside of the k-th contour). 

The calculation of these forces introduces only a small 

computational overhead as calculation of the ( )sdf ( ; )s

k
Mx , 

requires only addition and subtraction of active contours’ signed 

distance functions which are already available. More information 

on how to calculate ( )s

k
M  for simple level set configurations is 

given in [12]. 

 

4. EXPERIMENTAL RESULTS 
 

The described algorithm has been tested on a small number of actin 

tagged fluorescence confocal microscopy image stacks. Figure 5 

shows the results, obtained using 2D version of the algorithm, for 

two images selected from the stack shown in Figure 1. It can be 

noticed that the algorithm was able to extract cell boundaries 

despite of missing and “false” cell indicators. Although no truly 

quantitative assessment of the method has been undertaken so far, 

the results have been assessed qualitatively by a trained biologist 

who confirmed correctness of the detected structures. The 

algorithm has been tested in terms of its stability with respect to 

changes to its design parameters, and although there have been 

observed some variability of the segmentation results these were at 

the level typical for active contour methods.  
 

 
 

Fig. 5. Nucleus (in red) and cell boundaries (in yellow) segmented 

in stack of images from Figure 1, shown in two selected slices. 
 

To quantitatively validate the proposed algorithm, many more tests 

with different image stacks representing different cell types will be 

conducted in a near future. For such analysis to have any practical 

meaning it is necessary though to build a comprehensive database 

of segmented cells, annotated by different experts to enable 

corrections for inter- and intra- observer variability, in the analysis 

of the accuracy of the method.  

 

5. CONCLUSIONS  
 
The paper describes a novel method for topologically consistent 

segmentation of cellular structures in the images obtained from the 

actin tagged fluorescence confocal microscopy images. The 

novelty of the method is in the proposed multiphase geodesic 

distance map region competition combined with the topology 

preserving medial axis constrained introduced to the level set  

evolution equations. The initial experimental results suggest that 

the method not only copes well with missing cell boundary 

information but also, contrary to previously proposed methods, is 

resilient to spurious structures formed by actin stress fibres in 

monolayer cell cultures. Although more comprehensive, 

quantitative validation of the method is needed before full 

conclusion could be drawn about its performance. It is believed 

that the method is suitable for large scale experiments aiming to 

develop a model of cytoskeleton response to ionising radiation 

insult. 
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