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ABSTRACT
Feature points are low-level image features representing

meaningful image regions and ideal candidates for feature-

based image representation, and feature point detection is an

essential pre-processing step for high-level computer vision

tasks. Existing feature detection algorithms are either com-

putationally intensive (multi-scale detectors) or sensitive to

scale variations (single-scale detectors). In this paper, we

propose a computationally efficient multi-scale corner de-

tector based on Discrete Wavelet Transform (DWT). We use

non-redundant DWT coefficients to build a corner strength

map at each scale in a data-compact way and upsample these

maps by the Gaussian kernel interpolation to the original im-

age size. By taking the summation of these maps, a corner

strength measure is formed. We propose a new scale selec-

tion method that utilizes a Gaussian kernel convolution to

measure the corner distribution in the vicinity of every corner

point. In addition, the so-called “Polarized Gaussian” kernels

are introduced to achieve rotational invariance. The high effi-

ciency of the proposed corner detector is shown through both

computational complexity analysis and accuracy analysis.

Index Terms— Corner Point Detection, Multiresolution,

Discrete Wavelet Transform

1. INTRODUCTION

Feature points are powerful image features in that they in-

dicate junctions of different objects or different areas. Many

feature detection methods have been proposed, most of which

fall into two categories. Methods in the first category measure

the corner strength using image derivatives. Harris et al. con-

structed a second moment matrix and used its eigenvalues to

measure the corner strength [1]. Harris detector is computa-

tionally efficient but lacks scale invariance, making it unstable

under scale changes. Mikolajczyk et al. extended the Harris

detector into scale space with automatic scale selection, mak-

ing it scale invariant [2]. In Scale Invariant Feature Transform

(SIFT), Lowe used the Difference of Gaussian (DoG) to build

the image pyramid for detecting keypoints [3]. Speeded-Up

Robust Features (SURF), was designed by Bay [4] follow-

ing the similar principle as SIFT, but with lower computa-

tional complexity due to the usage of the integral image for

fast convolutions. These multi-scale detectors are built from

the Gaussian kernel, making them computationally intensive.

Methods in the second category analyze the local patch

of every pixel. Smith et al. proposed the Smallest Univalue

Segment Assimilating Nucleus (SUSAN) corner detector [5],

where the corner strength measure is defined as a weighted

sum of pixel intensities within a disc area surrounding the

central pixel. Rosten et al. designed the Features from Accel-

erated Segment Test (FAST) corner detector [6]. The corner

strength measure is defined as the number of consecutive pix-

els darker/brighter than the central pixel on a Bresenham cir-

cle. These single-scale corner detectors are computationally

efficient, but are unstable under scale changes.

We propose in this paper a multi-scale corner detector

that is both computationally efficient and presents high ac-

curacy. The corner strength measure is calculated from the

non-redundant DWT coefficients. The scale parameter of a

corner point is defined as a function of the corner distribu-

tion at its vicinity. To make the scale calculation efficient,

we provide an approximate solution using a Gaussian kernel

convolution. By introducing the so-called “Polarized Gaus-

sian” kernels, the proposed corner detection method achieves

rotational invariance.

2. CORNER DETECTION FROM DUAL-TREE
COMPLEX WAVELET TRANSFORM (DTCWT)

2-D DWT decomposes an image into multiple scales. The or-

thogonal wavelet based decomposition is non-redundant, thus

incurring no additional storage overhead. Fast Wavelet Trans-

form (FWT), an efficient implementation of the DWT, further

exploits the relationship of DWT coefficients between adja-

cent scales, making DWT computationally efficient.

In images, we define a set of connected pixels with differ-

ent intensities on their two sides as an “edge” and the intersec-

tion of edges as a “corner”. By using the 2-D DWT decompo-
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sition, we can find the edges by examining the local extremes

of wavelet coefficients along the horizontal, vertical or diago-

nal directions. Then we can find a corner point by looking at

the coordinates where two or three wavelet coefficients along

different directions both/all reach a local extreme.

The DWT is not isotropic, meaning the edge detection is

not rotationally invariant, and so does the corner detection.

Recently Fauqueur et al. proposed a corner detector that ap-

plies the Dual-Tree Complex Wavelet Transform (DTCWT)

[7]. The DTCWT is directional selective, therefore making

the corresponding corner detector rotational invariant. They

build a “Keypoint Energy Map” for localizing keypoints from

decimated DTCWT coefficients, and the keypoint scale pa-

rameter is determined by the gradient minima of the keypoint

energy map in its vicinity.

However, the DTCWT analysis is redundant, specifically,

the data volume of the decomposition structure doubles the

size of the original image, and thus incurs additional com-

putational cost and data storage. The additional overhead

to compensating the rotational variance, sometimes could be

hazardous, especially for the computer vision algorithms run-

ning on low end systems, for example, the resource-constraint

wireless visual sensor networks, where both the computa-

tional resource and the data storage resource are scarce [8].

3. CORNER DETECTION FROM NON-REDUNDANT
DISCRETE WAVELET TRANSFORM

In this section, we detail the design of the DWT-based cor-

ner detector. Compared to DTCWT, the proposed corner

detector shows advantages from four aspects. Firstly, the

image scale space is built from non-redundant DWT, mak-

ing the decomposition data possessing the same size as the

original image, incurring no additional storage space, and

therefore no additional data computation. Secondly, we use

the Haar wavelet basis, which constitutes a set of orthog-

onal wavelet bases, and therefore the DWT decomposition

can be implemented through FWT, having favorable com-

putational speed. Thirdly, the scale parameter calculation is

implemented through approximating the scale function using

Gaussian kernel convolution, which is more computationally

efficient. At last, the non-isotropic property of DWT is com-

pensated by introducing the 6 polarized Gaussian kernels.

3.1. Determine the Corner Point Locations

The DWT decomposition of an image of size m × n using

Haar wavelet results in a decimated dyadic decomposition up

to scale J . This means for each pixel in the original image,

at each decomposition scale s, we have three wavelet coef-

ficients denoted as W1s(i, j), W2s(i, j) and W3s(i, j), re-

spectively. We follow the same formulation as in [7] to define

the value of the corner strength map Cs at coordinate (i, j) as

Cs(i, j) = (
3∏

t=1

|Wts(i, j)|) 1
3 (1)

where i = 1, 2, · · · ,m/2s, j = 1, 2, · · · , n/2s.

Due to the decimated decomposition, the size of each Cs

differs by 2s. Detecting local maxima on Cs separately at

each scale would result in poor corner point localization in the

original image. As suggested in [7], we instead interpolate

Cs at each scale up to the original image size m × n using

a Gaussian kernel (i.e., upsample by the factor of 2s for Cs)

with the standard deviation proportional to the scale factor 2s.

Denote the interpolated corner strength map Cs as ICs. The

corner strength measure at the original resolution is then

C =
J∑

s=1

ICs. (2)

The DWT is not isotropic, therefore the corner strength

measure C is not rotational invariant. This means when a

straight line rotates, due to the discretization, the same line

will show consecutive “zig-zag” patterns and these will be

detected as crowed corner points. To achieve rotational in-

variance, we firstly introduce the following scale parameter
to identify (and thus remove) the crowed corner points and

then introduce the polarized Gaussian kernels to achieve rota-

tional invariance. By using this two-step procedure, we leave

the most computationally intensive process, i.e., the convolu-

tion with the 6 polarized Gaussian kernels, to the very end,

which applies only on a small set of pixels, thus reducing the

computational complexity to a great extent.

3.2. Determine the Corner Point Scales

The scale parameter calculation is designed based on the ob-

servation that the false corners on an inclined discrete straight

line are usually clustered together. Therefore, it is appropri-

ate to assign small scale parameters to corners where they are

densely distributed. In other words, the corner scale is re-

lated to the corner distribution at its vicinity. The two factors

involved in describing the corner distribution for a reference

corner are: How many corners are within the neighborhood

and how far away these neighbor corners are from the refer-

ence corner. Then the value of the corner scale map S at (i, j)
is defined as

S(i, j) =

∑
c∈Nc(i,j)

dc(i, j)

|Nc(i, j)| (3)

where dc(i, j) is the Euclidean distance between the reference

corner at (i, j) and its neighbor corner c, Nc(i, j) is the set of

all neighbor corners of the reference corner, |Nc(i, j)| is the

number of corners in Nc(i, j).
Although the two factors in Eq. 3 can be calculated explic-

itly, finding these accurate values would be time consuming.
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To speed up the scale parameter calculation, we propose a

new method to approximate Eq. 3. We name Cm the “Corner

Map”, which is an m × n matrix with binary entries, with 1
indicating a corner point at that coordinate and 0 indicating

no corner. The Corner Map Cm is the resulting matrix of tak-

ing the local maximum from the corner strength measure C
and then binarizing. We convolve Cm with a Gaussian kernel,

and only record the convolution results at the coordinates that

correspond to corners. For a single corner point on Cm, the

convolution result equals to a weighted sum of 1s (if there is a

neighbor corner) and 0s (if there is no neighbor corner) at its

vicinity and the weight is decided by the Gaussian kernel. For

a specific corner, the closer other corners to it, the larger the

summation is; the more neighbor corners it has, the larger the

summation is. At last, the reciprocals of the Gaussian convo-

lution results are used as the scale parameter for corners.

To finally achieve the rotational invariance, we define the

so-called “Polarized Gaussian” kernels. By examining the

convolution responses to these kernels, the false corners from

the rotation can be removed and the DWT-based corner de-

tector becomes rotational invariant.

A polarized Gaussian kernel is created by element-wise

multiplying a Gaussian kernel with a binary mask. The el-

ements in the binary mask are either “1”s (the elements in

the upper half and the right side of the horizontal central line

of the binary mask) or “−1”s (the rest elements). Figure 1

shows the calculation for a polarized Gaussian kernel. The

element summation inside a polarized Gaussian kernel along

any direction passing the center is zero, thus making this ker-

nel have small responses to false corners, and large responses

to real corners when convolving with the corner map Cm. A

real corner may have small response for a polarized Gaussian

kernel if its two rays fall into the two polarizations separately,

but by providing another five rotated polarized Gaussian ker-

nels, this possibility has been significantly minimized. Fig-

ure 2 shows the 6 polarized Gaussian kernels by rotating the

first one 30◦, 60◦, 90◦, 120◦, and 150◦, respectively.

.* �

Fig. 1. Building a polarized Gaussian kernel by multiplying

a Gaussian kernel with a binary mask, where “.∗” represents

the element-wise multiplication.

Fig. 2. The six polarized Gaussian kernels.

The scale selection algorithm is summarized as follows

• Step 1: Convolve Cm with a Gaussian kernel, and the

reciprocal of the result is used as an approximation

to the scale parameter for each corner point, S(i, j).

Most real corners would have a larger scale parameter

and all corners detected from the discretization effect

(i.e., edge points) as well as some very few real corners

would have a smaller scale parameter.

• Step 2: To separate edge points and some real corners

with a smaller scale parameter, convolve these points

with the 6 polarized Gaussian kernels, respectively. Re-

move corners that have small responses for all 6 polar-

ized Gaussian kernels as these would indicate the edge

points.

4. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed DWT-based cor-

ner detector in terms of both computational complexity and

the accuracy measured by the repeatability rate. The proposed

algorithm is compared with three state-of-the-art multi-scale

feature point detectors, namely, the detector in SIFT, the de-

tector in SURF, and the multi-scale Harris detector.

4.1. Computational Complexity

To evaluate the computational efficiency, we compare the

number of operations (addition, multiplication and compar-

ison) for the four multi-scale feature point detectors, as a

function of the image size. Fig. 3 shows the results. All

these four detectors have computational complexities which

are linear functions of the image size. Among the four detec-

tors, the detector in SIFT is most computationally intensive,

followed by the detector in SURF and the multi-scale Harris

detector. The DWT-based corner detector is the most efficient

compared to other multi-scale detectors, because the scale

space from a DWT decomposition is more compact than the

Gaussian scale space.
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Fig. 3. Number of operations (multiplications, additions and

comparisons) as a function of the image size. Image sizes

varies from low resolution of 600× 800 to high resolution up

to 100 Megapixels.

We then apply the four detectors on the 6 “graffiti” im-

ages in the Oxford dataset 1, and record their average running

1http://www.robots.ox.ac.uk/∼vgg/research/affine/
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times. The detector in SIFT takes 7.45 seconds to detect 419
feature points, the detector in SURF takes 1.47 seconds to de-

tect 516 feature points, the multi-scale Harris detector takes

4.77 seconds to detect 458 corners, and the DWT-based de-

tector takes 1.65 seconds to detect 536 corners. Because the

multi-scale Harris detector and the DWT-based corner detec-

tor are implemented in Matlab code, but the detectors in SIFT

and SURF are implemented in C code, these values are listed

for illustration purpose only.

4.2. Repeatability

Repeatability is used to evaluate the accuracy of the feature

detectors, which measures the geometrical stability of the de-

tected feature points between different images of the same

scene taken under different viewing conditions [9]. The re-

peatability is a function of the tolerance σ (repeated detec-

tions do not exactly overlap, but are σ pixels away). To calcu-

late the repeatability, we need images from a planar scene, so

that these images can be related by a homography transform.

There are only a few image datasets containing images

from planar scenes and Schmid et al. generated 2 image sets

of their own in evaluating different feature point detectors [9].

We use the 6 “graffiti” and 6 “wall” images from the Oxford

dataset, both taken from planar scenes, but under various ge-

ometric transformations, including translation, scaling, rota-

tion, and perspective changes. The repeatability rates are cal-

culated on every 2-image pairs, then the average is taken from

the 15 image pairs, as shown in Fig. 4 (a) for the “graffiti” im-

ages, and Fig. 4 (b) for the “wall” images.
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Fig. 4. Repeatability rate as a function of the tolerance (σ) for

the 6 “graffiti” images (a) and the 6 “wall” images (b).

As shown in Fig. 4, the DWT-based corner detector has

the highest repeatability rate, once the σ is greater than 2.5.

This is because the scale space from the DWT decomposition

is not as fine as the scale space using Gaussian function, a

price paid for the data compactness. However, this tolerance

is acceptable in most situations, because mature feature de-

scriptors, like the histogram of local gradients used in SIFT,

can compensate for the feature point localization error at this

level [3].

5. CONCLUSION

We presented a computationally efficient method for multires-

olution corner detection using Haar wavelet based DWT. The

contribution of this paper is two-fold: Firstly, non-redundant

DWT decomposition is utilized to build a compact scale space

for multi-scale corner detection, reducing both data storage

space and computational cost; secondly, the drawback of us-

ing non-redundant DWT, i.e., the non-isotropic property, is

compensated by introducing a scale parameter and polarized

Gaussian kernels, with little overhead in computational cost.

Experimental results showed our approach has the lowest

computational complexity compared to state-of-the-art multi-

scale feature detectors, and has the best performance in terms

of repeatability, under a reasonable tolerance.
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