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ABSTRACT

The last few years have seen considerable progress in pedes-

trian detection. Recent work has established a combination

of oriented gradients and optic flow as effective features al-

though the detection rates are still unsatisfactory for practical

use. This paper introduces a new type of motion feature, the

co-occurrence flow (CoF). The advance is to capture relative

movements of different parts of the entire body, unlike exist-

ing motion features which extract internal motion in a local

fashion. Through evaluations on the TUD-Brussels pedes-

trian dataset, we show that our motion feature based on co-

occurrence flow contributes to boost the performance of ex-

isting methods.

Index Terms – HOG, motion feature, flow, pedestrian

1. INTRODUCTION

Pedestrian detection is a highly active research area of com-

puter vision, involving various techniques to improve fea-

ture design, classification as well as non-maximal suppres-

sion. The applications range from surveillance to image in-

dexing and notably automotive safety [14, 8, 11, 6, 9] which

this paper is also concerned with. A recent benchmark [5],

using a large dataset recorded from a moving vehicle, pro-

vides an overview of state-of-the-art performance of a num-

ber of detection algorithms [2, 16, 4, 7, 12, 20]. It reported

that histograms of gradients (HOG) [2] remains competitive,

while the detection rates of the best methods still require large

improvements for practical applications. One of the com-

mon challenges in most of these vision systems is to deal

with varying appearance of pedestrians under different walk-

ing phases as well as viewing directions by using static image

features. An exception is [16], which first employed motion

features, although a static camera was assumed.

Motion is an important cue, especially for a monocular

system, which enables us to see what is not noticeable in a

single image. Although there have been few works which

incorporate motion in pedestrian detection [16, 3, 21, 13], it

was recently shown that additional use of motion features to

HOG can enhance the performance for on-board sequences,

in particular for pedestrians with side views which are of high

importance in automotive safety applications [21]. The added

motion feature, originally introduced in [3] as histograms of

flow (HOF) feature, was computed for example by applying

wavelet-like operators on a 3×3 local cell grid of HOG.

In this paper, motivated by the previous work [21] which

justified the use of motion, we introduce a novel motion fea-

ture, the co-occurrence flow (CoF). The idea of co-occurrence

flow is to capture possible coherence in movements of differ-

ent body parts into a motion feature. It is also inspired by

the co-occurrence histograms of oriented gradient [18], which

are obtained by pairwise voting of edge orientations. In our

case, in order to encode the unique motion of walking into

our feature, we design the CoF feature through pairwise com-

parisons of histograms of optic flow for the entire body, i.e.

across exhaustive combinations of cells defined typically by a

4×8 grid of squares, forming a rectangular region. See Fig. 1

for the sketch of the CoF feature.

We compute probabilities of being pedestrian for candi-

date regions in terms of a combination of CoF feature and a

multi-level version of the HOG descriptor [2]. As the classi-

fier we choose to employ the linear SVM and HIKSVM, sup-

port vector machines with histogram intersection kernel [12],

because of the performance and the popularity.

In the remainder of the paper, Section 2 describes CoF,

the new motion feature, together with our implementation of

HOG. Section 3 explains the setting of our pedestrian detec-

tion and shows the performance of our detector in experi-

ments in comparison with that of HOF feature combined with

HOG. Section 5 is the conclusion.

2. CO-OCCURRENCE FLOW

Our motion feature is motivated by the fact that strong corre-

lations exist in the movements of different body parts when

a pedestrian is walking. They include correlations between

the motion of two legs, those between two parts of an arm,

or those between a leg and an arm. The correlations provide

useful cues to identify the walking motion unique to pedestri-

ans [13]. It is at least the case for human vision, as shown for

example by a well known experiment of Johansson [10].

In our system, we aim to capture this discriminative power

in optic flow correlations which we call co-occurrence flow
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Fig. 1. An example of our motion feature, co-occurrence flow (CoF) feature vector, computed for a sub-window consisting of 4 × 8 cells.

We first compute the oriented edge energy responses and store them in discretised channels. (In this case we consider six orientations and

therefore use six integral images accordingly.) We then compute a local histogram of signed flow amplitude for each cell, and make pairwise

comparisons of histograms across exhaustive combinations. See text in Section 2 for details.

(CoF). Namely, when certain flow is observed on one body

part, simultaneous flows on other parts are likely to be related

to it in specific ways, either coherent or dissimilar with some

characteristic differences depending on the offsets of the body

parts. We encode this notion in the CoF feature (see Fig. 1).

We design it to be suitable for window search so that it can

be utilised jointly with a HOG feature, which is also the case

with our detector. This section introduces the design details

of the CoF feature, preceded by the description of our HOG

implementation.

2.1. Multiscale HOG

Our approach to extract HOG features starts with computa-

tions of the oriented edge energy responses by convolving the

input image, I, with oriented odd Gabor filters in d (= 8)
different orientations, which is reported to improve results

[12]. As we use integral images [1] to efficiently compute

our features in windows of various size, this filtering is first

performed for the entire image, I, rather than separately for

each overlapping detection window. We denote the outputs of

Gabor filtering in the j-th direction as G(j) for j = 1, ..., d.

Given a candidate rectangular region, R, of an arbitrary

size and with the aspect ratio of 1:2 for finding pedestrians, we

define cells, subregions of R, in each of which we compute

elements of HOG feature. The cells are gridwise generated in

a multi-level fashion so that we have 2l×2·2l(l = 0, ..., lmax)
cells in each level. We choose lmax = 3 as a reasonable

number for the finest level. To give a rough idea, this indicates

that each cell in the bottom level consists of 8 × 8 pixels for

an R with size 64×128 pixels.

For a cell at a level l, which we refer to as wl(m,n) for

m = 1, ..., 2l, n = 1, ..., 2l+1, we construct a set of feature el-

ements, f l(m,n) ∈ R
d, by computing the sum of the outputs

of Gabor filtering, {G(j)}, at each orientation channel within

the corresponding subregion. That is,

fl(m,n) = {el(m,n; j)} , j = 1, ..., d (1)

el(m,n; j) =

∣

∣

∣

∣

∣

∫

wl (m,n)

G(u, v; j)dudv

∣

∣

∣

∣

∣

(2)

where (u, v) are local coordinates in R. We then nor-

malise fl(m,n) by using filter outputs over all directions.

Thus, our normalised feature, f̃l(m,n), consists of entries

ẽl(m,n; j), j = 1, ..., d :

ẽl(m,n; j) = el(m,n; j) /
1

d

d
∑

j=1

el(m,n; j) (3)

Now, we incorporate outputs at coarser scales which are

generally known to be useful (see e.g. [15]) and form an NG-

dimensional HOG descriptor, vG, by concatenating the fea-

tures of different levels by vG = [f̃3 f̃2 f̃1 f̃0] where NG =

d
∑lmax

l=0 2l · 2l+1. NG = 1360 when d = 8 and lmax = 3.

2.2. CoF feature

Co-occurrence flow (CoF), uses pairwise comparisons be-

tween local histograms of optic flow as its building blocks.

Given a rectangular region, R, we generate a (= m×n) cells

in the same way as the second finest level in computing HOG;

l = 2 so that a = 4 × 8 (see Fig. 1). In each cell, wk(m,n)
for m = 1, ..., 2k, n = 1, ..., 2k+1, k = 2, we compute a

local histogram of optic flow, H(m,n), by voting the pixels

according to the orientations of flows into b (= 6) bins while

using their flow magnitudes as weighting factors.

We use the technique of [19] for computing a regularised

flow field for the entire image, I. For the sake of computa-

tional efficiency, the flow field is stored in separate channels

F (i) for i = 1, ..., b (one per discretised orientation). Each

F (i) is represented using integral images. Thus, each bin of

the local histogram, H(m,n), can be effectively produced by

accessing the subregion of {F (i)} which corresponds to the
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cell of interest, wk(m,n). That is, the i-th element of the

histogram is computed as

h(m,n; i) =

∫

wk (m,n)

F (u, v; i)dudv , i = 1, ..., b.(4)

Given an on-board camera, the computed flow field is nat-

urally influenced by possible camera motion. Our strategy to

cope with the influence of camera motion is to subtract the

dominant background flow from the original flow before gen-

erating the local histogram. This is in contrast to the previous

approach of using derivatives of differential flow such as in

Internal Motion Histogram descriptors [3, 21]. In practice,

we compute the dominant flow by averaging the flow glob-

ally observed in R. We can compute the i-th element of the

histogram considering this subtraction simply by

h′(m,n; i) = h(m,n; i)−

∫

R

F (u, v; i)dudv . (5)

We then make the pairwise comparison of H ′(m,n) for

all possible NF (= aC2) combinations inside R. We have

NF = 496 for a = 4×8. Using the L1 norm as the measure1,

each comparison outputs a scalar, SAB = |H ′(A)−H ′(B)|1
where A and B are indices to arbitrary cells, and thereby we

obtain an NF -dimensional vector, vF = {SAB}, which en-

codes our CoF feature.

3. EXPERIMENTS

Our pedestrian detection is based on a window search. As

explained earlier, we take computational efficiency into con-

sideration in several aspects of our detector; we compute CoF

and HOG features using integral images in order to reduce

the cost of window search. By facilitating the access to sub-

windows at arbitrary positions in varying scales, our CoF and

HOG features computation is done in a GPU implementation.

We search for pedestrians by extracting bounding-boxes at

every 4 pixels along both horizontal and vertical directions

across the input image. We examine 17 different scales rang-

ing from 0.4 to 2.0, corresponding to 50 and 256 pixels of the

height. Each detection is counted as correct if it overlaps with

an annotation by more than 50% using the intersection-over-

union measure.

Once we run a search and detect numerous regions of in-

terest (ROIs) that are classified as pedestrians, we apply a non

maximal suppression (NMS) algorithm to merge the detec-

tions. The approach we take is to smooth the 3D map of

output detection scores across 2D coordinates and scale, and

then to find their local peaks which we select as positive out-

puts. The dimensions of the feature vectors, vG and vF , are,

NG = 1360 and NF = 496, respectively, given a = 4 × 8.

Our feature, v = [vGvF ], therefore has the total of 1856 di-

mensions.

1We found the performance better than the case of using histogram inter-

sections.
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Fig. 2. The ROC curves generated for TUD-Brussels dataset using:

(i) CoF+HOG features (in dashed), (ii) multiscale HOG features (in

solid), and (iii) HOF+HOG features (in dotted). Overall, CoF+HOG

features perform the best among the three.

3.1. Training scheme

We use the TUD-MotionPairs database [21] for the purpose

of training as the images are provided as sets of consecu-

tive frames so that training based on motion features is possi-

ble. The positive dataset taken in a busy pedestrian zone con-

sists of 1092 pairs of images, containing 1776 annotations of

pedestrians. The negative dataset consists of 192 images con-

taining no pedestrians. We take a few approaches to increase

the number of training samples; we extract several samples

per annotation by wobbling the region which we access for

computing the features while considering mirroring as well.

We then train the classifier: support vector machines with lin-

ear or histogram intersection kernel.

After training with those initial samples and therewith

running the classification using the same training data set, we

acquire numerous examples of false positive (hard negative)

as well as true negative. We then proceed the bootstrapping

training by using those additional samples.

3.2. Evaluations

For evaluations we use the TUD-Brussels database [21] that

is recorded from a car driving at varying speed. It consists of

508 pairs of images containing 1326 annotated pedestrians.

In order to evaluate the entire scheme, we study the perfor-

mance in plots in terms of recall and precision by a simulation

using positive (annotated) pedestrian regions and randomly

selected negative rectangular regions (note that the resulting

recall rates appear relatively higher in terms of ROC curves

than the cases of using actual detections). We then compare

the results of using (i) CoF+HOG features with those from (ii)

HOG features only. We also compare the CoF+HOG features

with (iii) a HOF+HOG features, a state-of-the-art motion fea-

ture IMHd2 [17], which is a recent modification of HOF. The

dimension of this motion feature alone is 2520 per rectangular

region, which is reduced from the original HOF feature [3].

In Fig. 2, we show the ROC curves obtained with those

three types of features. Linear support vector machines are
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Fig. 3. Examples of pedestrian detections by HOG+CoF features. Detected bounding boxes are shown in green. The second picture shows

colour coded optic flow map for the frame shown in the left.

used for this analysis. The performance increase by our de-

tector using CoF+HOG features is significant over the case

of using only HOG features. The difference in the obtained

recall is by 14.9% at a false positive rate of 90%. CoF+HOG

features also outperforms HOF+HOG features by 5.8% at the

same error rate although the recall rate deteriorates at false

positive rates lower than 2%. It should be noted that CoF fea-

tures achieve the performance with the dimension that is five

times smaller (half in total including HOG) than that of the

alternative HOF feature.

Fig. 3 shows examples of pedestrian detection by HOG +

CoF features with HIKSVM (detected bounding boxes over-

laid). The optic flow map is also provided for the leftmost

example. It appears evident in the flow map that motion can

serve as a strong cue, however it is also observed that issues

may arise due to occlusions; in this example one of the targets,

the third from the right, was not detected when HOG+HOF

features were used instead although it is with our HOG+CoF

features as can be seen. Overall these examples illustrate that

CoF features efficiently capture the motion of pedestrians.

4. CONCLUSION

We have introduced a new motion feature, the co-occurrence

flow (CoF), which improves the performance of pedestrian de-

tection in combination with the HOG descriptor. The idea

is to globally capture relative movements of different body

parts. We evaluated the performance of CoF feature through

experiments, and showed that our detector using the CoF fea-

ture boosted the performance by combining it with a standard

HOG feature even though a limited amount of data has been

analysed so far.

Future work will be first directed to a more thorough

evaluations with a larger dataset. It will be also interesting

to investigate how the two complementary features can be

unified in other efficient ways. Finally, the concept of co-

occurrence flow can have broader applications to recognition

of motion such as those of human actions in video processing.
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