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ABSTRACT 

 

We propose a new method to track a seismic horizon with a 

discontinuity due to a fault throw assumed to be quasi-

vertical. Our approach requires the knowledge of the two 

points delimiting the horizon as well as the discontinuity 

location and jump. We deal with a non linear partial 

derivative equation relied on the estimated local dip. Its 

iterative resolution is based on a Poisson equation with 

incremental Dirichlet boundary conditions. By exploiting a 

coherence criterion, we finally present an efficient method 

even when the discontinuity location and jump are unknown. 

 

Index Terms— Seismic horizon tracking, Poisson 

equation, Incremental boundary conditions, Fault detection. 

 

1. INTRODUCTION 
 

Manual seismic data interpretation is a difficult and time-

consuming task. That is why many recent numerical 

frameworks have been dedicated to understanding 

geological processes [1]. In this paper, we particularly focus 

on tracking seismic horizons [2][3]. Some authors [4][5] 

consider a non linear partial derivative equation (PDE) 

relied on the estimated local dip. Lomask et al. [5] propose 

to solve it with a global optimization technique using an 

iterative algorithm. Unfortunately, this approach only 

achieves for continuous horizons. Assuming that a 

discontinuity arises from a quasi-vertical fault throw, we 

present a new PDE approach capable of tracking a 

discontinuous horizon. The method is based on a linear 

Poisson equation with incremental boundary values.  
 

 

2. HORIZON TRACKING ALGORITHM 
 

A seismic horizon can be considered as a curved segment 

represented by a function � defined between two abscises �� 

and ��. The function (figure 1a) is supposed to be 

discontinuous at abscise � ∈ ���, ��	 with a jump 
� = lim�→�� ���� −  lim�→�� ����. 

 

 

  (a)                     (b) 

Figure 1a - Discontinuous seismic horizon. 

Figure 1b - Influence of the value of  � on the function �̃. 
 

The tracking of a continuous horizon is obtained by solving 

a PDE that connects τ to the tangent � of the local dip: 
 

 ∀� ∈ 	��, ���,   ∇���� = ���, �����, (1) 
 

where ∇ denotes the gradient operator [5]. The local dip, 

which corresponds to the angle between the horizon and the 

horizontal axis, is a known dense field previously estimated 

over the entire seismic image. Its tangent � and τ are 

respectively considered as functions of class C
1
 and C

2
. 

When the tracked horizon is discontinuous, τ is a function of 

class C
2
 only on 	��, ��� −  �!. We propose to decompose it 

into the sum of an unknown C
2
 class function on 	��, ��� denoted �̃ and a discontinuous function �̂. The 

function �̃ is obtained by solving equation: 
 

 ∀� ∈ 	��, ���,   ∇�̃ ��� = ���, �̃��� + �̂����, (2) 
 

while �̂ is defined by: 
 

 �̂��� = −�
�H�� − �� + �1 − ��
�H�� − ��, (3) 
 

where � is chosen between 0 and 1 and H is the Heaviside 

step function: 

 H��� = &0 if � ≤ 01 if � > 0*. (4) 

 

The value of � impacts the mean value of �̃ by partially 

matching � and �̃ either on the left side (� = 0) or on the 

right side (� = 1) of the discontinuity (figure 1b). Any 

intermediate value of �̃ is obtained for � in �0,1	. Equation 

(2) is non linear because � depends on τ, thus an iterative 

algorithm is used to get �̃. 
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2.1. Solution in continuous domain 
  
The algorithm consists of an initialization step, an iterative 

step and a final step. �̃ is initialized to a constant reference -. ∈ 	�����, ������ controlled by �. The iterative step is 

made of three parts: residual computation, update term 

computation and updating. As described in the previous 

section, τ is finally computed as the sum of the calculated 

function �̃ and �̂. 
 

Initialization step: 
 

 ∀� ∈ 	��, ���, 
�̃0��� =  -. =  ����� + ������� − ������. 

(5) 

 

Iterative step: 

• Residual computation: 
 

 12��� = ∇�̃2��� − ���, �̃2��� + �̂����. (6) 
 

• Update term computation: 
 

 ∆�4�̃2� = −div�12�, (7) 
 

where ∆ denotes the Laplace operator and div is the 

divergence vector operator. Equation (7) is a Poisson 

equation associated with two boundary values 4�̃2���� and 4�̃2���� called Dirichlet conditions which ensure the unicity 

of the solution: 
 

 7 4�̃0���� =  −������� − ����� − 
��
4�̃0���� =  �1 − �������� − ����� − 
��* 

 

and  74�̃2���� =  0
4�̃2���� =  0 ∀8 > 0*. 

(8) 

 

 

• Updating: 
 

 �̃29���� =  �̃2��� +  4�̃2���. (9) 

 

According to equation (8), the boundaries of �̃ are fixed after 

the first iteration. Convergence is assumed to be reached 

after a number : of iterations. 

 

Final step: 

 ���� =  �̃;��� +  �̂���. (10) 

 
2.2. Solution in discrete domain 
 

 
Figure 2 - Continuous and discrete jump. 

In a numerical solving of equation (2), the interval 	��, ���  is sampled in < points. As the discontinuity 

location � is not necessary a sampling point, let =� denote 

the index > 	1, <� of the largest sampling point value that is 

not greater than �. The notion of continuous jump is 

irrelevant (figure 2), so 
�  is replaced by a discrete jump 
? = ��=� + 1� − ��=��. Introducing 
? in the Dirichlet 

boundary conditions implies that the boundaries of �̃ cannot 

be fixed after one iteration because 4�̃�=�� ≠ 4�̃�=� + 1�. 

As a result, the previous algorithm is modified by adding 

incremental Dirichlet boundary conditions relied on a jump 
 initialized to 
? and updated at each iteration. The 

discontinuous function �̂ is consequently updated too.  

 

Initialization step: 
 

 ∀ = ∈ 	1, <�, �̃0�=� = -. 
0 = 
? �̂0�=� = −�
0H�=� + 1 − =� +�1 − ��
0H�= − =��. 

(11) 

 

Iterative step: 

• Residual computation: 
 

 12�=� = ∇�̃2�=� − ��=, �̃2�=� + �̂2�=�� (12) 
 

• Update term computation: 
 

 ∆�4�̃2� = −div�12� (7) 

 

with the following Dirichlet conditions: 
 

 7 4�̃0�1� =  −������� − ����� − 
0�
4�̃0�<� =  �1 − �������� − ����� − 
0�* 

 

and  7 4�̃2�1� =  −��
2A� − 
2�
4�̃2�<� =  �1 − ���
2A� − 
2� ∀8 > 0*. 

(13) 

 

• Updating: 
 

 �̃29��=� =  �̃2�=� +  4�̃2�=� 
29� = 
? − ��̃29��=� + 1� −  �̃29��=��� 

�̂29��=� = −�
29�H�=� + 1 − =�+ �1 − ��
29�H�= − =��. 
(14) 

 

 It can be noted that the difference 
2A� − 
2  

converge to 0, which guarantees the convergence of the 

algorithm. 

 

Final step: 
 

 ��=� =  �̃;�=� + �̂;�=�. (15) 

 

 Equation (7) is solved [6][7] by a direct Fourier 

transform method: 
 

 4�̃2 = DFTA� EDFT	−div�12��
DFT	∆� F, (16) 
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where DFT and DFTA� are respectively the discrete Fourier 

transform and the inverse discrete Fourier transform. The 

ability to invert the Laplace operator is described in [6]. 

Using DFT implicitly assumes that the input sequence is 

periodic, thus an odd mirror is applied to check the boundary 

values and avoid undesirable effects [7]. A type-I Discrete 

Sine Transform (DST) can then be employed to compute 

each transform in H�<log<�time. 
 

 

3. DISCONTINUITY DETECTION METHOD 
 

Assuming that an horizon presents a discontinuity with an 

unknown jump 
?  at an unknown location =�, its tracking 

can be obtained by testing several candidates �=� , 
?� and 

identifying the optimal one �=�KLM , 
?KLM�. 
 

 A naïve and calculation time-consuming method is 

an exhaustive test by taking =�  and 
? in chosen sampled 

intervals. Various coherence criteria can then be used to find 

�=�KLM , 
?KLM�. The attribute presented in [8] measures the 

correlation level between vertical traces within a small 

analysis window neighborhood. The gradient disorder 

criterion described in [9] performs the two-dimensional 

coherence of the gradient vector. Donias et al. [10][11] 

address a fault attribute based on a robust directional 

scheme. This method is well-suited to differentiate faults 

from stratigraphic features and consists in performing an 

eigenstructure analysis of the gradient vector field 

covariance matrix along a segment.  We establish the 

gradient on N sampled points along the segment O =
P�=� , ��=���, �=� + 1, ��=� + 1��Q. The coherence criterion 

computed for the candidates �=� , 
?� is defined by: 
 

 R�=� , 
?� = S� − S�S� + S�, (17) 

 

where S� and S� are the eigenvalues in decreasing order of  

the approximated covariance matrix. Eigenvalues are very 

close on a fault, leading to an attribute close to zero. In 

contrast, the largest eigenvalue S� is much higher than the 

other one and the criterion tends to 1 in the absence of fault. 
 

 Owing to the criterion sensitivity to all stratigraphic 

signatures, the global minimum of the criterion response 

calculated for all candidates �=� , 
?� can sometimes be an 

irrelevant peak and does not correspond to the optimal 

horizon. For a given =� , the mean R ̅ of the coherence 

attributes for all tested jumps is therefore calculated to 

reduce influence of irrelevant peaks. The optimal location 

=�KLM
 is the argument of this mean criterion minimum. The 

optimal jump stems from a dispersion measure on the tested 

horizon: 
 

 
?KLM =   arg minXY
Z[ , (18) 

where \ is the seismic amplitude along the horizon � and Z 

its standard deviation.  

4. RESULTS AND DISCUSSIONS 

 

4.1. Synthetic data  
 

The horizon tracking algorithm is firstly tested on a 

synthetic image obtained from a mathematic model �M] corrupted by an additive two-component Gaussian 

mixture (figure 3). The discontinuity location and jump are 

assumed to be known. Figure 4 depicts the difference ^ 

between the estimated function � and �M] for 1, 2 and 10 

iterations. 
 

 
 

Figure 3 - Noisy synthetic image (200 × 200) with the tracked 

horizon for 
? = 8.2 and =� = 110. 

 

 
Figure 4 - ^ = � − �M]   for different values of  :. 

 

 In the area around the discontinuity, the difference ^ is extremely weak (less than 0.2 pixels for one iteration). 

On the boundary, ^ is insignificant and tends towards zero 

(10
-3

 for 10 iterations, 10
-4 

for 30 iterations). That proves 

precision, fast convergence and noise robustness of our 

algorithm. 
 

 

4.2. Real seismic data  
 

The horizon tracking algorithm is also validated on 

numerous real seismic data for which the fault location and 

jump are unknown. Figure 5 shows an example of a seismic 

data with two input points. The candidates =�  and 
? are 
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chosen respectively in the sampled interval  	�� + 1, �� − 1� 
and 	−17, −2� with a 0.5 step while N = 10 points are taken 

on O.  

  

 
 

Figure 5 - Seismic data with two input points and the optimal 

tracked horizon. 

 

 
 

Figure 6 - Coherence criterion response. 

 

 Figure 6 presents the coherence criterion response. 

A meaningful line of local minimum values corresponds to a 

given fault location =� . Irrelevant peaks nevertheless appear 

due to the criterion sensitivity to other stratigraphic features. 

Increasing the value of N slightly affects the results by 

smoothing the response without eliminating artifacts. 

Computing the mean R ̅ of the coherence attribute for each 

value of =�  (figure 7a) provides an extremely discriminatory 

criterion to detect the fault location. This criterion proves the 

significant accuracy of our method. Once =�KLM
 is fixed, the 

dispersion measure defined in equation (18) offers a proper 

estimation of the fault jump (figure 7b). 

 

 
(a)                    (b) 

Figure 7a – Mean of the coherence attribute. 

Figure 7b - Standard deviation of the seismic amplitude along the 

tested horizons. 

 

Figure 5 also depicts the optimal tracked horizon for 30 

iterations. Discontinuity location and jump are well 

predicted and the identified horizon seems to be merged 

with the observable one.  

 

5. CONCLUSION 
 

We have developed a new algorithm to track a seismic 

horizon with a quasi-vertical discontinuity. Only the 

knowledge of the two points delimiting the horizon and the 

estimated local dip are required. Our approach consists in an 

iterative global optimization technique when the key point is 

a Poisson equation with incremental Dirichlet boundary 

conditions. The obtained results exhibit good performances 

on both synthetic and real data. 
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