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ABSTRACT 
This paper presents a novel solution toward the accurate and 
automatic cartilage segmentation with multi-contrast MR images 
based on pixel classification. The previous pixel classification 
based works for cartilage segmentation only rely on the labeling 
by a trained classifier, such as support vector machines (SVM) or 
k-nearest neighbors. However, these frameworks do not consider 
the spatial information. To incorporate spatial dependencies in 
pixel classification, we explore a principled framework of pixel 
classification based on the convex optimization of an SVM-based 
association potential and a discriminative random fields (DRF) 
based interaction potential for our task of cartilage segmentation. 
The local image structure based features as well as the features 
based on geometrical information are adopted as the features. We 
finally perform the loopy belief propagation inference algorithm to 
find the optimal label configuration.  Our framework is validated 
on a dataset of multi-contrast MR images. Experimental results 
show that the combined features compare favorably to the two 
types of separate features and our pixel classification framework 
outperforms the conventional frameworks based solely on SVM or 
DRF for cartilage segmentation in subject-specific training 
scenario. 

Index Terms—Automatic segmentation, discriminative 
random fields, support vector machines, MRI, cartilage 
 

1. INTRODUCTION 
Human knee joint is commonly affected by osteoarthritis (OA), a 
prevalent disease mainly characterized by the degradation of the 
articular cartilage. Since the assessment of OA requires exact 
quantification of the cartilage, accurate cartilage segmentation as 
the key to such quantification has gained considerable attention in 
recent years. Manual and semi-automatic segmentation are 
typically labor intensive with reconstruction time up to several 
hours and prone to inter- and intra-observer variability. It is thus 
advantageous to automate the segmentation. However, automatic 
cartilage segmentation from MR images is a very challenging task 
due to many factors, such as the thin variable morphology of the 
cartilage, variable intensity homogeneity, the low contrast between 
the cartilage and other soft tissues, and MR artifacts. In this paper, 
we address the problem of automatic cartilage segmentation with 
multiple sets of MR images taken with different sequences 
(referred to as multi-contrast MR images). To the best of our 
knowledge, the research on cartilage segmentation from multi-
contrast MR data is sparse. 
 
1.1. Related Works 
Several works automatically segmented cartilages from MR 
images using atlas [1] or deformable-model [2, 3] based approach-
es which typically require a large training datasets to get the prior 
knowledge. Without formulating the prior knowledge, image 
segmentation can also be considered as a statistical classification 

problem in which each pixel belongs to a class. Folkesson et al. [4] 
proposed to use a two step k-nearest neighbors (k-NN) classifier to 
automatically separate cartilages from non-cartilages. Each pixel 
was described by selected local image structure based features. 
While all the aforementioned works have performed cartilage 
segmentation from a single MR sequence, multi-contrast MR 
images can provide different contrast mechanisms between tissues 
and would help separate different tissues. Koo et al. [5] proposed 
to segment cartilage automatically with multi-contrast MR data 
using the SVM, and utilized intensities as well as geometrical 
information as the features. However, these pixel classification 
based works [4, 5] assumed that individual pixels were indepen-
dent, which may not be appropriate for the cartilage segmentation 
task. As pointed out by [6], class labels are not independent in 
most real-world spatial classification problems, where correlations 
in the labels exist in data with multi-dimensional structure, such as 
images and volumes. This motivates us to incorporate spatial 
dependencies in the pixel classification for cartilage segmentation. 

 
1.2. Overview of the Work Presented 

In this paper, we present a novel solution to the problem of 
automatic cartilage segmentation with multi-contrast MR images 
based on SVM and DRF, which not only incorporates the spatial 
dependencies in pixel classification but benefits from the generali-
zation ability of the classification based on SVM. Specifically, we 
adopt the pixel classification framework based on the minimization 
of the convex combination of the SVM-based association potential 
and the DRF-based interaction potential for cartilage segmentation. 
We also employ a feature set encoding diverse forms of image and 
anatomical structure information, including intensities, image local 
structure based features [4] and geometrical information [5] all of 
which are crucial and helpful to distinguish cartilages from other 
tissues. The block diagram of the presented segmentation 
framework is shown in Figure 1. Although the framework of the 
combination of SVM and DRF has been proposed for prostate 
cancer localization [7] and brain tumor extraction [8], it has not 
been specialized for cartilage segmentation. Unlike these works, 
we perform the loopy belief propagation (LBP) for the inference in 
this paper. The major contributions of this paper lie in the 
following. First, this is the first work of incorporating the spatial 
dependencies in the pixel classification for cartilage segmentation. 
Second, the image local structure based features and the features 
based on geometrical information are combined as the features in 
our framework, which outperforms the pixel classification based 
on either of the two types of features.  

2. METHODOLOGY 

2.1 Description of Multi-contrast Human Knee MR Images 
and Preprocessing 

We use a database consisting of multi-contrast human knee MR 
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Figure 1. The block diagram of the presented segmentation framework 

 
images from [4]. Multiple sets of MR images were taken for a knee 
joint from each subject using a 3.0T magnet scanner (GE 
Healthcare, Waukesha, WI) with multiple MR sequences including 
FS SPGR, FIESTA, and IDEAL GRE (water and fat images). 
Different MR sequences were acquired using different sets of 
parameters. FS SPGR sequences were obtained with echo time 
(TE) 4ms, repetition time (TR) 28ms, and flip angle (FA) 25°; 
FIESTA with TE 3.5ms, TR 7.2ms and FA 25°; IDEAL GRE 
(water & fat) with TE 3.4ms, TR 9.4ms and FA 30°. In addition, 
several parameters were common, with all images acquired in the 
sagittal plane with slice thickness 1.5mm, in-plane spacing 
0.625×0.625 mm2 and matrix size 256×256. The golden standard 
cartilage segmentation for each knee was obtained by an expert’s 
manual segmentation in the form of binary mask images of 
cartilage. 

Preprocessing is required before segmenting cartilage from 
these knee MR data. The multiple sets of MR images are aligned 
using the MultiResMI Registration in ITK [9]. We removed 
regions that contain no cartilage information and the volume size is 
reduced to 150×188×55. Intensities of all sets of MR images were 
normalized to [0 1], which brings them within the same dynamic 
range, improving the stability of the classifier.  

 
2.2. Segmentation Methods 
Throughout this paper, let { }y yi i S∈= represent the observed data, 
where the observation yi of the ith site is typically represented by 
d-dimensional feature vector, and S is the set of sites.  Let the 
corresponding labels at the image sites be given by { }x i i Sx ∈= , 
where ix is the class label of the ith site. The aim of the classifica-
tion based segmentation is to infer the most likely joint class labels 

* *{ }x i i Sx ∈=  based on the observed data y by a classification model. 
 
2.2.1 Classification Model 
Although SVM has been used to segment cartilages in [5], it does 
not consider spatial information in the classification process, 
which is necessary and beneficial to the cartilage segmentation. 
Probabilistic graphical models such as Markov random fields 
(MRF) and DRF have been used to incorporate spatial contextual 
constraints in many applications [6]. In our cartilage segmentation 
task, one of the main challenges is that anatomic structures in 
particular the cartilages have complex shapes and variable 
appearances in MR images, which causes that the observed MR 
data may not be appropriately modeled by some specifically 
factorized forms. Since DRF alleviates the need to model the 
distribution over the observations, we thus select DRF instead of 
the generative MRF to incorporate spatial dependencies for 

cartilage segmentation. In DRF model [6], the joint distribution 
over the labels x given the observations y can be written as, 

1( | ) ( , ) ( , , )x y y y
i

i i ji S i S j N
p A x I x x

Z ∈ ∈ ∈
= ∏ ∏ ∏              (1) 

where Z is a normalization constant called the partition function, 
( , )yiA x is the association potential modeling dependencies be-

tween the label ix and the observations y , and ( , , )yi jI x x is the pair-
wise interaction potential modeling dependencies between the 
labels ,i jx x and the observation y . A generalized linear model 
(GLM) with the logistic function as a link is used for ( , )yiA x [6], 

( )( , ) 1 / (1 e )w f yy Ti ixiA x −= +                          (2) 
where w is the model parameter,

 
( )f yi is the feature vector for 

node i . The interaction potential is modeled as, 
( )( , , ) e v f yy Ti j ijx xi jI x x =                               (3) 

where v  is the model parameter, ( )f yij is the feature vector for 
nodes i and j computed from the observations y . ( )f yij can be set 
by taking the absolute difference of ( )f yi and ( )f yj , that is, 

( ) | ( ) ( ) |f y f y f yij i j= − which penalizes for high absolute differences 
in the features of neighboring nodes. 

To improve upon the cartilage segmentation based on SVM in 
[5], we adopt the unified formulation of SVM and DRF in [8] 
which was originally applied to brain tumor extraction. In addition, 
the unified formulation of SVM and DRF is also preferable to the 
original DRF based on GLM because of the appealing 
generalization ability of SVM. Therefore, as in [8], we utilize 
SVM in the association potential. Then, the unified model can be 
written as 

0 1

( )
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where ( )γ •  in the association potential is the SVM decision 
function which can be described as [10] 

( ) ( , )y y yi i ll L
xk bγ α

∈
= +∑

                              

(5) 

where the parameter iα and a bias b can be learned through solving 
a quadratic programming problem [10], yl denotes support vector, 
L is the set of indices of the support vectors, and ( )k i  is the kernel 
function that can map the observation into higher dimensionality 
feature space. The most commonly used kernel for classification is 
the Gaussian radial basis function with 2

|| ||
2( , ) exp( )y yy y i j

i jk σ
− −= . 

In the model (4), 0 1[ , ]u Tu u= and v are the association potential 
parameters and interaction potential parameters, respectively, to be 
estimated in the training stage. The features used in this work are 
to be determined in the following subsection. 
 
2.2.2. Features 

Features based solely on intensity are insufficient to extract 
cartilage due to overlapping intensity distributions and ambiguous 
boundaries between the cartilage and non-cartilages. Hence, we 
also adopt the local image structure related features including 
Gaussian smoothed intensities, the first- and second-order deriva-
tives, and three eigenvalues of the Hessian, which have been 
successfully used for cartilage segmentation task in [4]. Further, 
the geometrical information of the anatomical structure in the 
multi-contrast MR images has proven to be crucial to distinguish 
cartilage from surrounding tissues such as muscle [5]. The geo-
metrical information for each pixel used in this paper include 
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Euclidean distance from the closest bone and gradient of the 
distance, angle between the main magnetic direction of the MRI 
and the line to the femoral center line, and relative location along 
the medial and lateral center of the distal femur. 

Thus, the feature set adopted in this paper consists of 
normalized intensities of multi-contrast MR images, features 
related local structure of images, and geometrical information 
based features. 

 
2.2.3. Learning and Inference 
In the classification model (4), we first compute the SVM decision 
function ( )γ i by solving a quadratic programming problem using 
SVMlight [11]. Then the parameters { , }u v are simultaneously 
estimated with M training images using pseudolikelihood,  
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To prevent over-fitting, we utilize the L2-regularization, 
which involves adding a penalty term with the form of a sum of 
squares of all the parameters in order to discourage the parameters 
from reaching large values. We thus have the following penalized 
negative logarithm pseudolikelihood 
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where 1λ  and 2λ are nonnegative regularizing constants determined 
by cross-validation. Since the penalized logarithm pseudo-
likelihood in (7) is jointly convex with respect to the parameters 
u and v , it can be easily minimized using gradient descent.  

For a given new test knee MR image 'y , we perform the LBP 
inference algorithm [12] to obtain an optimal label configuration 

*x using the learned model parameters { , }u v . In the implement-
tation, we utilize the UGM toolbox provided by Dr. Mark Schmidt 
[13]. 

3. EXPERIMENTS AND RESULTS 
In this section, we validate our cartilage segmentation framework 
with multi-contrast MR images and compare it to SVM [5] and 
DRF [6]. As in some works on segmenting medical images [8], we 
employ a subject-specific training scenario, where the classifier is 
trained on a subset of the subject’s data and then tested on another 
subset or the whole data set. We use every fifth slice as the 
training data and all the slices as the testing data. 

3.1. Evaluation Metrics 
Besides visual evaluation, the cartilage segmentations automatical-
ly obtained are quantitatively compared to the golden standard 
using sensitivity, specificity and Dice similarity coefficient (DSC), 
since they have been used in existing cartilage segmentation works 
[2, 3, 4]. Sensitivity / ( )TP TP FN= + is the true positive fraction 

and specificity / ( )TN FP TN= +  the true negative fraction, while 
DSC 2 / (2 )TP TP FN FP= + + is a spatial overlap index, where 
TP is true positive, TN is true negative, FP is false positive,  and 
FN is false negative counts for the pixels. 

3.2. Results 
To validate the performance improvements through the use of 
multi-contrast MR sequences and different types of features, we 
construct five different feature vectors for each pixel as follows. 
• Feature vector 1 (FV1) consists of normalized intensities of 

multi-contrast MR images only;  
• Feature vector 2 (FV2) consists of normalized intensities of 

multi-contrast MR images and features related to local structure;  
• Feature vector 3 (FV3) consists of normalized intensities of 

multi-contrast MR images and geometrical information based 
features;  

• Feature vector 4 (FV4) consists of normalized intensities of 
single contrast MR images, features related to local structure, 
and geometrical information based features;  

• Feature vector 5 (FV5) consists of normalized intensities of 
multi-contrast MR images, features related to local structure, 
and geometrical information based features. 

Figure 1 depicts the segmentations of our method for one 
slice of a knee (It should be noted that we here only illustrate the 
segmentation results of one knee visually as an example due to the 
limited space) using FV1, FV2, FV3, FV4 and FV5, respectively, 
Table 1 gives the average quantitative measures for all slices of all 
knees. From both visual evaluation (Figure 1) and quantitative 
evaluation (Table 1), one can see that our method with FV5 gives 
the best segmentation performance, which indicates the benefit of 
using multi-contrast MR images and more types of features. 
Therefore, we will perform the remaining experiments using FV5 
only. To compare segmentation performances of DRF, SVM and 
our method visually and quantitatively, Figure 2 gives the 
segmentations for one slice of the same knee in Figure 1, the curve 
of the DSC values for all slices is shown in Figure 3, and Table 2 
provides average quantitative measures for all slices. It is easy to 
observe the superiority of combining DRF with SVM to using only 
DRF or SVM as the classifier. 

4. CONCLUSIONS 

In this paper, we utilized DRF to incorporate spatial dependencies 
in the pixel classification for automatic cartilage segmentation with 
multi-contrast MR images. We adopted the pixel classification 
framework based on energy minimization of the convex 
combination of the SVM-based association potential and the DRF-
based interactive potential. We also employed a feature set 
encoding diverse forms of image and anatomical structure 
information to improve the segmentation performance. We finally 
performed the LBP inference algorithm to find the optimal label 
configuration. Experiments on the human knee multi-contrast MR 
data show the effectiveness of combining DRF with SVM for 
cartilage segmentation. 
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Figure 1. Segmentation results using our method: (a) the cropped 
MR image for one slice from one knee, (b) the gold standard, (c) 
segmentation using FV1, (d) segmentation using FV2, (e) segmen-
tation using FV3, (f) segmentation using FV4, (g) segmentation 
using FV5, (h) the legend.  
 

   
(a)      (b)         (c) 

Figure 2. Segmentation results using DRF, SVM and our method: 
(a) segmentation using DRF, (b) segmentation using SVM, (c) 
segmentation using our method. Note that the cropped MR image 
for this slice is the same as in Figure 1(a) and the gold standard is 
the same as in Figure 1(b). 
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Figure 3. DSC results obtained for all slices from one knee with 
DRF, SVM and our method, respectively. 

Table 1. Mean±std of sensitivity, specificity, and DSC with our 
method using FV1, FV2, FV3, FV4 and FV5.  

our method
with sensitivity specificity DSC 

FV1 0.843±0.227 0.892±0.008 0.325±0.106 
FV2 0.442±0.169 0.995±0.021 0.536±0.238 
FV3 0.843±0.129 0.989±0.007 0.866±0.101 
FV4 0.879±0.113 0.996±0.002 0.886±0.093 
FV5 0.909±0.114 0.997±0.002 0.913±0.090 

 

Table 2. Mean±std of sensitivity, specificity, and DSC using FV5 
with DRF, SVM and our method. 

method sensitivity specificity DSC 
DRFs 0.848±0.095 0.975±0.022 0.775±0.162 
SVMs 0.884±0.111 0.996±0.003 0.872±0.112 

our method 0.909±0.114 0.997±0.002 0.913±0.090 
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