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ABSTRACT

EXchangeable Image File format (EXIF) is a metadata header

containing shot-related camera settings such as aperture, ex-

posure time, ISO speed etc. These settings can affect the

photo content in many ways. In this paper, we investigate

the underlying EXIF-Image correlation and propose a novel

model, which correlates image statistical noise features with

several commonly used EXIF features. By formulating each

EXIF feature as a weighted combination of different image

statistical noise features, we first select a compact image

statistical noise feature set using sequential floating forward

selection. The underlying correlation as a set of regression

weights is then solved using a least squares solution. When

applying our learned correlation to detect image manipula-

tion, we achieve average test accuracies of 94.6%, 94.1% and

94.9% in three different cameras to detect the presence of

common image brightness and contrast adjustment.

Index Terms— EXIF, Image manipulation, digital foren-

sics

1. INTRODUCTION

With the advancement of photo editing tools, electronic al-

terations of digital images for deceiving purposes become an

easy task. Existing works on image tamper detection have

gained a lot of attention in the recent years. Different types

of image regularities originated from different parts of digital

still camera (DSC) system have been modeled and detected

for forensic purposes, such as chromatic aberration [1] in op-

tical system, photo response non-uniformity (PRNU) sensor

pattern noise [2], demosaicing regularities [3, 4], and other

statistical regularities [5, 6, 7, 8]. In this paper, we explore a

novel correlation between image statistical noise features and

EXchangeable Image File format (EXIF) header features for

detecting image manipulation.

EXIF [9] is the DSC image file format standard for stor-

ing metadata, such as camera settings. It is widely supported

by images in JPEG format and TIFF format as an interna-

tional standard in the DSC system. As an example in Fig. 1,

(a) A Photo (b) The EXIF header

Fig. 1. A photo with the corresponding EXIF header information.

shot settings such as ISO speed rating, exposure time and F -

number are commonly recorded into the EXIF headers while

the photo is captured. These shot settings can affect the photo

content in many ways. For example, a large ISO speed rating

generally provides good sensor’s sensitivity especially under

the low light condition and at the same time, leads to more

visible image noise. To the best of our knowledge, this is

the first forensic work that explores the potential EXIF-Image

correlation for image forensic purposes, e.g. tamper detec-

tion.

The photon transfer curve (PTC) in [10] shows that the

standard deviation of total sensor noise is correlated with

digital camera signal intensity (DCSI), i.e. the amount of

effective light impinging onto an image sensor during the

shutter-opening period. Since DCSI is closely associated

with some EXIF settings, e.g. aperture and exposure time,

and the standard deviation of sensor noise can be evaluated

from the photo content, potentially this correlation can be

modeled and explored as EXIF-Image correlation for foren-

sic purpose. Inspired by this new concept, we investigate and

learn the correlation between several selected EXIF features

and image statistical noise features as several sets of regres-

sion weights. When applied to detect image manipulation,

our learned EXIF-Image correlation is demonstrated to be ef-

ficient in detecting the presence of common image brightness

and contrast adjustment.

The rest of the paper is organized as follows. In Section 2,

we model the correlation between images and EXIF headers.

The learned correlation is used to detect image manipulation

in Section 3. Section 4 concludes our work.
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Fig. 2. Scheme of the proposed method. (a) Modeling the correlation between images and each of EXIF header features. (b) Detecting image

manipulation using each of EXIF header features.

2. PROPOSED METHOD

Fig. 2(a) is the block diagram for modeling the EXIF-Image

correlation. In the blocks labeled ‘Extraction of Image Sta-

tistical Noise Features’ and ‘Extraction of EXIF Header Fea-

tures’, the procedures for extracting statistical noise features

from the images and for extracting EXIF header features from

the images are shown, respectively. The correlation of two

types of features is learned in the block labeled ‘Modeling

The EXIF-Image Correlation’. The detailed procedures are

explained in the following section.

2.1. Extraction of image noise features

In view that the sharp area of the image tends to have high
frequency energy which affects the noise estimation, we com-
pute image statistical noise features in the non-sharp area of a
given color image, Al, where l = 1, . . . , L and L is the total
number of training images. A non-sharp area is defined by
the sharpness residuals. By first converting Al to a grayscale
image, we convolute it with a 3×3 Gaussian filter to obtain its
smoothed version. The sharpness residual image is computed
as the absolute difference between the grayscale version of
the image Al and its smoothed version. Using a histogram,
we plot the normalized distribution of the sharpness residual
image in Fig. 3(a). The equation defining the sharp area and
non-sharp area of the image is shown as follows:

B(p, q) =

{
1 if G(p, q) > r
0 if G(p, q) < r

(1)

where G(p, q) is the sharpness residual at the location (p, q)

and r is the threshold. In our work, r is empirically chosen to

be the sharpness residual corresponding to 0.9 in the cumula-

tive distribution of sharpness residuals. B(p, q) = 1 indicates

that the location (p, q) is in the sharp area. Otherwise, (p, q) is

in the non-sharp area.
We further expand the sharp area through dilation using a

structuring element V of a unity mask of 3× 3 as

M = B ⊕ V (2)
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(a) The sharpness residual distribution (b) Map M after dilation

Fig. 3. An example of our computed sharp area and non-sharp area

using the photo example in Fig. 1(a). Black area in (b) indicates

non-sharp area to be included.

where M is the map indicating the sharp area as 1 and the

non-sharp area as 0, as shown in Fig. 3(b). By expanding

the sharp area through dilation, we ensure that our statistical

noise features would not be affected by the image area with

large sharpness residuals.

We then extract the noise features as follows. We use 4

different types of denoising filters including averaging filter,

Gaussian filter, Median filter and Wiener filter [11]. All filter

masks are of 3 × 3 pixels and for Gaussian filter, we choose

0 to be its mean and 0.5 to be its standard deviation. Differ-

ent types of denoising filters are targeted to remove different

types of noises. For instance, the median filter is effective for

removal of salt and pepper noise.
Each denoising filter is convoluted with each color chan-

nel F of an image Al to obtain the denoised color channel D.
The noise residual f(p, q) is computed using

f(p, q) = log2 |F (p, q)−D(p, q)| (3)

The image statistical noise feature z is computed below within
the non-sharp area using

z = (
1

R

∑
M(p,q)=0

(f(p, q)− μ)2)
1
2 (4)

where μ = 1
R

∑
M(p,q)=0

f(p, q) is the mean, R is the number of

pixels in the non-sharp area, z ∈ zl and zl is a feature vector

of 12 image statistical noise features corresponding to a total
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of 12 different combinations of color channels and denoising

filter types.

2.2. Extraction of EXIF header features

Camera settings expressed in the log scale are used to rep-

resent the EXIF header. The EXIF header feature, Ylj , j =
1, . . . , 5, is extracted from the EXIF header for a given train-

ing image Al, as given in [9].
Aperture value Yl1 = log2(N

2)
Shutter speed value Yl2 = log2(1/t)
ISO speed rating value Yl3 = log2(I/3.125) (5)

Brightness value Yl4 = Yl1 + Yl2 − Yl3

Exposure value Yl5 = Yl1 + Yl2

where N is the F -number, t is the exposure time and I is the

ISO speed rating. The above EXIF header features share a

common unit of stop, where increment by 1 stop indicates the

amount of light falling on the digital sensor is doubled.

2.3. Modeling the EXIF-Image correlation

As mentioned earlier, the PTC in [10] shows a correlation be-
tween standard deviation of sensor noise and DCSI. We ob-
serve from the PTC plot that when DCSI is represented in the
log scale, the large central portion of the PTC tends to be lin-
ear alike. The logarithm of DCSI is linearly associated with
our selected EXIF header features and the standard deviation
of sensor noises can be represented by our noise features. In
this subsection, we correlate each EXIF header feature with
the image statistical noise features. Each EXIF header feature
is formulated as weighted combination of our reconstructed
noise features. For instance, the aperture value Yl1 of the l-th
image is written as follows:

Yl1 =
∑

xlu∈xl

xlusu1 + el1 (6)

where el1 is the regression error, su1 is the weight of the u-th

feature xlu, xlu ∈ xl and xl = {zl1, . . . , zlC , . . . , zl1zl2, zl1zl3,

. . . , zl(C−1)zlC , . . . , z2l1, . . . , z2lC} is the reconstructed fea-

ture vector which includes both the first order and the second

order polynomial terms of statistical noise features zl = {zlc}.

The second order polynomials are added to cater for the non-

linearity of the underlying correlation, which can be further

affected by the postprocessing pipeline of a DSC system.

After reconstructing the statistical noise features, the di-

mensions of the new features are high. Since not all fea-

tures are equally important and some can even adversely af-

fect the result, we use sequential floating forward selection

(SFFS) [12] to reduce the feature dimension. Starting from an

empty feature set, SFFS performs stepwise feature inclusion

and conditional feature removal to select a subset of features

to get the optimal feature subset. The criteria we minimize in

SFFS is the root mean square regression error (RMSRE) of

the estimated aperture values on the training images. During

each step, the regression weights are estimated using a stan-

dard least squares solution in order to estimate the RMSRE.
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Fig. 4. RMSRE versus selected features number in SFFS for esti-

mating aperture value.

Fig. 4 plots the RMSRE of the estimated aperture value

versus the number of selected noise features. When no fea-

ture is selected, the RMSRE is about 4.8, which is also the

root mean square of the aperture values of all the training

images. With increasing number of selected features , the

RMSRE gradually decreases. When the number of selected

noise features exceeds 40, the RMSRE almost saturates at

0.57. Therefore, we choose K=40 features. In the SFFS se-

lection, the reduction of the RMSRE from 4.8 to 0.57 shows

that the aperture value can be efficiently predicted from the

selected noise features using our proposed model.
After processing all training images, a set of compact

features is obtained. Furthermore, considering the selected
noise features, regression weights for the aperture value can
be computed as follows:

w1 = (X1
T X1)

−1X1
T Y1 (7)

where X1 =

⎡
⎢⎣
x11 · · · x1K

...
. . .

...

xL1 · · · xLK

⎤
⎥⎦, Y1 =

⎡
⎢⎣
Y11

...

YL1

⎤
⎥⎦, xlk ∈ xl is the k-th

selected feature by SFFS and k ≤ K. Using the same proce-

dures described, we can learn the regression weights for other

EXIF header features. Finally, regression weights wj , where

j = 1, . . . , 5, are obtained and saved for the testing phase.

2.4. Detection of image manipulation

Fig. 2(b) shows the procedures of detecting image manipu-

lation using the learned regression weights wj . The selected

statistical noise features, X̂j , are extracted from a testing im-

age in the same manner as the training images. The estimated

EXIF header feature is obtained as X̂jwj . The estimation er-

ror, Ej = |Ŷj − X̂jwj |, between the genuine EXIF header fea-

ture, Ŷj and the estimated header feature is computed. Ej is

then compared against a threshold, ρj . If Ej is larger than the

threshold, ρj , the testing image is regarded as manipulated.

Otherwise, the image is genuine.

3. EXPERIMENTAL STUDY

In this experiment, we detect 6 types of brightness and con-

trast adjustment. We first collect 400 camera default JPEG
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Fig. 5. Mapping curves used for brightness and

contrast adjustment of the image.

Table 1. Accuracy rate for different EXIF header features averaged over 100 repeated ex-

periments.

Average Aperture Shutter ISO Brightness ExposureRate=0.946
True Positive 0.9526 0.9424 0.9537 0.9446 0.9364

True

Image brightness + 0.9148 0.9261 0.9285 0.9115 0.9232

Negative

Gamma Compression 0.9697 0.9491 0.9646 0.9587 0.9480

Inverse S 0.9696 0.9506 0.9684 0.9553 0.9427

S curve 0.9710 0.9505 0.9665 0.9583 0.9460

Gamma expansion 0.9696 0.9458 0.9667 0.9589 0.9446

Image brightness - 0.9198 0.9311 0.9250 0.9185 0.9163

photos from an Olympus E500 camera. These photos are cap-

tured in the automatic mode with different camera settings.

These images cover a large variety of common scenes. We

randomly select 200 photos to learn the regression weights

and the other 200 images for testing. This experiment is re-

peated 100 times based on different combinations of training

images and testing images. Each color channel of the test-

ing image is manipulated separately using the curves in Fig.

5, which are commonly used by brightness and contrast ad-

justment. In total, our testing set contain 1400 images, which

consists 200 genuine testing images and 1200 manipulated

testing images.
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Fig. 6. ROC curve of various EXIF header features.

In order to classify the genuine class and the manipulated

class of testing images, we find the threshold of equal error

rate (EER), of these two classes from the Receiver Operating

Characteristics (ROC) curve, as shown in Fig. 6 and obtain

the accuracy rate. The average accuracy rate of each type

of manipulated images for the 100 repeated experiments is

shown in Table. 1. For instance, the true positive rate (de-

tection of genuine images) of Aperture is 95.26%. On the

other hand, the true negative rates (detection of manipulated

images) of Aperture for Brightness+, Gamma compression,

Inverse S, S, Gamma expansion and Brightness- are 91.48%,

96.97%, 96.96%, 97.1%, 96.96% and 91.98% respectively.

Among all the EXIF header features, the true positive rate of

ISO is the best with 95.37%. From the table, we can observe

that the true positive rates and true negative rates remain con-

sistently high for all EXIF header features which indicate that

our model is fairly accurate. The average EER rate for 5 EXIF

header features is 94.6%. We have conducted this model on

several other camera models. Similar good average rates are

achieved with 94.1% for Canon 10D and 94.9% for Canon

450D, respectively.

4. CONCLUSION

In the paper, we propose a novel method to model the EXIF-

Image correlation for image manipulation detection. The

model correlates the image statistical noise features with the

EXIF header features. First, we use regression algorithms

to obtain the correlation between the image statistical noise

features and EXIF header features. Then, we make use of the

model to detect brightness and contrast adjustment. By apply-

ing this model to detect brightness and contrast adjustment,

we can achieve average test accuracies of 94.6%, 94.1% and

94.9% in three different cameras for 6 types of brightness and

contrast adjustment. The good performance shows that our

method effectively models the correlation between the image

and its EXIF for detecting image manipulation.
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