
EDLINES: REAL-TIME LINE SEGMENT DETECTION BY EDGE DRAWING (ED)

Cuneyt Akinlar and Cihan Topal
{cakinlar, cihant}@anadolu.edu.tr

Computer Engineering Department, Anadolu University, Eskisehir, Turkey

ABSTRACT

We propose a linear time line segment detector that gives
accurate results, requires no parameter tuning, and runs up
to 11 times faster than the fastest known line segment
detection algorithm in the literature; namely, the LSD by
Gioi et al. The proposed algorithm also includes a line
validation step due to the Helmholtz principle, which lets it
control the number of false detections. Our detector makes
use of the clean, contiguous (connected) chain of edge
pixels produced by our novel edge detector, the Edge
Drawing (ED) algorithm; hence the name EDLines. With its
accurate results and blazing speed, EDLines will be very
suitable for the next generation real-time computer vision
applications.

Index Terms— Real-Time Line Segment Detection,
Edge Drawing Algorithm, LSD, Helmholtz Principle, NFA

1. INTRODUCTION

Line segment detection is an important problem in image
processing and computer vision with many applications
including image compression [1], crack detection in
materials [2], stereo-matching [3], robot-navigation [4, 5],
roadbed detection, among many others.

Traditional line segment detection algorithms first compute
an edge map (typically by the famous Canny edge detector
[6]), then apply the Hough transform [7, 8], and finally
extract all lines that contain a certain number of edge points.
Lines are broken into segments using gap and length
thresholds. These methods are not only too slow, but they
also combine non-contiguous line segments together, and
usually produce a lot of false detections.

Progressive Probabilistic Hough Transform [9, 10] has been
proposed to solve some of the shortcomings of the
traditional Hough transform. Although it manages
controlling the number of false detections, it fails to detect a
lot of true positives, and it is extremely slow to be of any
real use.

Etemadi [11] proposed a parameterless line detector that
detects both line segments and arcs. Similarly, Burns et al.

[14, 15] introduced a line segment detector that works by
combining pixels having the same orientation. Although
both of these algorithms produce well-localized line
segments, they also generate a lot of false positives,
especially in images with noisy backgrounds or those
containing complex structures such as trees, grass, cloudy
sky, or similar anisotropic structures.

Desolneux et al. [12, 13] proposed a parameterless line
detector that controls the number of false positives. Their
idea is to count the number of aligned pixels in a certain
orientation and accept the set of pixels as a line segment if
the observed structure is perceptually meaningful. This is
called the Helmholtz principle from Gestalt theory [13], and
is used as the line validation method. The problem with
Desolneux’s method is that it generates long lines which in
fact should be broken down into several line segments, and
that it is very computationally intensive, thus very slow.

By extending Burns’s work for line segment generation and
combining it with Desolneux’s line validation method using
the Helmholtz principle [13], von Gioi et al. [16, 17, 18]
have recently proposed a parameterless line detection
algorithm, called the Line Segment Detector (LSD), that
produces accurate line segments, and also controls the
number of false detections. Although LSD produces good
results for most types of images, it fails especially in images
where the background contains a lot of white noise, and its
running time is still prohibitive; which makes it unsuitable
for the next-generation real-time applications.

In this paper, we propose a fast, parameterless line segment
detector that produces accurate results, and runs up to 11
times faster than the fastest known edge detector; namely,
the Line Segment Detector (LSD) by von Gioi et al. [16, 17,
18]. Our detector also includes a line validation step due to
the Helmholtz principle [13], which lets it control the
number of false detections.

The proposed line detector is comprised of 3 steps: (1)
Given a grayscale image, we first run our fast, novel edge
detector, the Edge Drawing (ED) algorithm [19, 20, 23],
which produces a set of clean, contiguous chains of pixels,
which we call edge segments. Edge segments intuitively
correspond to object boundaries. (2) Next, we extract line

2011 18th IEEE International Conference on Image Processing

978-1-4577-1302-6/11/$26.00 ©2011 IEEE 2893

segments from the generated pixel chains by means of a
straightness criterion, i.e., by the least squares line fitting
method [21]. (3) Finally, a line validation step due to the
Helmholtz principle [13, 18] is used to eliminate false line
segment detections.

The rest of the paper is organized as follows: In section 2,
we briefly describe our edge detector, the Edge Drawing
(ED) algorithm [19, 20]. Section 3 describes how we fit
lines to pixel chains produced by ED. Section 4 describes
our line validation step, and section 5 compares the
performance of EDLines to others in the literature through
experimentation.

2. EDGE DETECTION BY EDGE DRAWING

Edge Drawing (ED) is our recently-proposed, novel, fast
edge detection algorithm [19, 20]. What makes ED stand out
from the existing edge detectors, e.g., Canny [6], is the
following: While the other edge detectors give out a binary
edge image as output, where the detected edge pixels are
usually independent, discontinuous entities; ED produces a
set of edge segments, which are clean, contiguous, i.e.,
connected, chains of edge pixels. Thus, while the output of
the other edge detectors requires further processing to
generate potential object boundaries, which may not even be
possible or result in inaccuracies; ED not only produces
perfectly connected object boundaries by default, but it also
achieves this in blazing speed compared to other edge
detector [19].

Given a grayscale image, ED performs edge detection in

4 steps:
(1) The image is first passed through a filter, e.g.,

Gauss, to suppress noise and smooth out the image.
(2) The next step is to compute the gradient magnitude

and direction at each pixel of the smoothed image.
Any of the known gradient operators, e.g., Prewitt,
Sobel, Scharr, etc., can be used at this step.

(3) In the third step, we compute a set of pixels, called
the anchors, which are pixels with a very high
probability of being edgels. Intuitively, these points
correspond to pixels where the gradient operator
produces maximal values, i.e., the peaks of the
gradient map.

(4) Finally, we connect the anchors computed in the
third step by drawing edges between them; hence the
name Edge Drawing (ED). The whole process is
similar to children’s boundary completion puzzles,
where a child is given a dotted boundary of an
object, and s/he is asked to complete boundary by
connecting the dots. Starting from an anchor (dot),
ED makes use of the neighboring pixels’ gradient
magnitudes and directions, and walks to the next
anchor by going over the gradient maximas. If you
visualize the gradient map as a mountain in 3D, this

is very much like walking over the mountain top
from one peak to the other.

(a) (b)

(c) (d)
Figure 1: (a) A grayscale image containing 4 rectangles,

(b) Gradient map, (c) Anchor points, (d) Final edge map.

Figure 1 shows ED in action on a 128x128 pixels

grayscale image. Figure 1(b) shows the gradient map, where
white pixels correspond to high gradient values (mountain
tops). Figure 1(c) shows an example set of anchors, which
correspond to peaks of the gradient map, and clearly depict
the boundaries of the rectangles in the image. The final edge
map, shown in Figure 1(d), is obtained by linking the
anchors (dots) (refer to [19] for a detailed description of
how ED links the anchors to obtain the final edge map). As
mentioned before, ED not only produces a binary edge map
similar to other edge detectors, but it also produces a set of
edge segments, which are connected chain of pixels
corresponding to object boundaries. In the given example,
ED generates 4 edge segments, one for the boundary of each
rectangle. Given these edge segments, all that remains for
line segment extraction is to go over these pixel chains, and
fit lines to the pixels. Next section describes how this is
done.

3. LINE SEGMENT EXTRACTION

Given an edge segment comprised of a contiguous chain of
edge pixels, the goal of this step is to split this chain into
one or more straight line segments. The basic idea is to walk
over the pixels in sequence, and fit lines to the pixels using
the least squares line fitting method [21] until the error
exceeds a certain threshold, e.g., 1 pixel error. When the
error exceeds this threshold, we generate a new line
segment. The algorithm then recursively processes the
remaining pixels of the chain until all pixels are processed.

2011 18th IEEE International Conference on Image Processing

2894

 Original Image (400x400) EDLines: 189 lines,11.08 ms LSD: 180 lines, 75.21 ms

 Original Image (500x466) EDLines: 887 lines,15.79 ms LSD: 802 lines, 185.65 ms

 Original Image (600x450) EDLines: 722 lines,13.25 ms LSD: 700 lines, 135.86 ms

Figure 3: A comparison of EDLines to LSD on three challanging images. EDLines is 10 times or more faster than LSD while
producing similar or better line segments. Both algorithms are run on a PC with an Intel 2.2 GHz CPU and 2 GB RAM.

Figure 2: Illustration of line segment extraction from a
contiguous chain of pixels. This chain corresponds to the
boundary of the top-left rectangle in Figure 1.

Figure 2 illustrates the idea: Here, we see the pixels of the
edge segment corresponding to the boundary of top-left
rectangle in Figure 1. Starting from the first pixel of the

chain, we take a certain number of pixels, e.g., 10, and fit a
line to these pixels by the least squares line fitting method.
This initial line determines the current direction of the line
segment and is illustrated by an arrow in Figure 2. We then
walk over the remaining pixels of the chain and compute the
distance of each pixel to the currently fitted line. We would
add pixels to the current line as long as the mean square
error stays within a certain bound, e.g., 1 pixel. Intuitively,
we would continue adding pixels to the current line segment
until we turn a corner and the direction of the line changes.
At that point, we output the current line segment and start a
new one. With this simple algorithm, 4 line segments would
be extracted from the given chain of pixels as illustrated in
Figure 2.

4. LINE VALIDATION

Similar to Desolneux [12] and LSD [18], our line validation
method is based on the Helmholtz principle, which basically

2011 18th IEEE International Conference on Image Processing

2895

states that for a structure to be perceptually meaningful, the
expectation of this structure (grouping) by chance must be
very low [13]. This is an “a contrario” approach, where the
objects are detected as outliers of the background model. As
shown by Desolneux [12], a suitable background model is
one in which all pixels (thus the gradient angles) are
independent. They show that the simplest such model is the
Gaussian white noise. To make validation by Helmholtz
principle concrete, Desolneux defines what is called the
“Number of False Alarms (NFA)” of a line segment as
follows [12]: Let A be a segment of length “n” with at least
“k” points having their directions aligned with the direction
of A in an image of size NxN pixels. Define NFA of A as:

,ሺ݊ܣܨܰ ݇ሻ ൌ 	ܰସ.ሺ1 െ ሻି

ୀ

An event is called ε-meaningful if itݏ	ܣܨܰሺ݊, ݇ሻ .ߝ
Desolneux [12] advises setting ε to 1, which corresponds to
one false detection per image. Given these definitions, we
validate our line segments as follows: For a line segment of
length “n”, we compute the gradient angle of each pixel
along the line segment and count the number of aligned
pixels “k”. We then compute ܰܣܨሺ݊, ݇ሻ, and accept the line
segment as valid if ܰܣܨሺ݊, ݇ሻ 1. Otherwise the line is
rejected. We would also like to note that line validation is an
optional last step in EDLines, and can be omitted if deemed
unnecessary. This would further speed up EDLines.

5. EXPERIMENTS

We compared the performance of EDLines [24] to other line
extraction algorithms in the literature. In this paper,
however, we compare EDLines only to LSD [22]. This is
due to the lack of space and LSD being the best line
segment detector (to the best of our knowledge) in terms of
speed and performance. Figure 3 shows the results produced
by EDLines and LSD on three challenging images. In all
cases, both EDLines and LSD were run with default
parameters, i.e., without any parameter tuning. It is clear
from the results that EDLines produces similar or better line
segments than LSD while running up to 11 times faster. We
should also note that LSD by default scales the image width
and height by 0.8; that is, it reduces the original image to
64% of its size before processing. The results for LSD given
in Figure 3 are based on this 0.8 scaling parameter. Without
any scaling, LSD takes much longer to execute, and
produces many more line segments.

6. REFERENCES

[1] P. Franti, E.I. Ageenko, H. Kalviainen, and S. Kukkonen,
“Compression of Line Drawing Images Using Hough Transform
for Exploiting Global Dependencies,” Int. Conf. on Inf. Sci., 1998.
[2] S. Mahadevan, and D.P. Casasent, “Detection of Triple
Junction Parameters in Microscope Images,” Proc. of SPIE, pp.
204-214, 2001.

[3] C.X. Ji and Z.P. Zhang, “Stereo Match Based On Linear
Feature,” International Conference on Pattern Recognition, pp.
875-878, 1988.
[4] P. Kahn, L. Kitchen, and E.M. Rieseman, “A Fast Line Finder
for Vision-Guided Robot Navigation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 12, no. 11, pp.
1098-1102, November 1990.
[5] P. Kahn, L. Kitchen, and E.M. Rieseman, “Real-Time Feature
Extraction: A Fast Line Finder for Vision-Guided Robot
Navigation,” Technical Report 87-57, COINS, 1987.
[6] J. Canny, “A Computational Approach to Edge Detection,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 8, no. 4, pp. 679-698, November 1986.
[7] R.O. Duda and P.E. Hart, “Use of Hough Transformation to
Detect Lines and Curves in Pictures,” Communications of the
ACM, vol. 15, pp. 11-15, January 1972.
[8] H. Kalviainen, P. Hirvonen, and E. Oja, “Houghtool – A
Software Package for the use of the Hough Transform,” Pattern
Recognition Letters, vol. 17, no. 8, pp. 889-897, 1996.
[9] J. Matas, C. Galambos, and J. Kittler, “Robust Detection of
Lines Using the Progressive Probabilistic Hough Transform,”
Computer Vision and Image Understanding, vol. 78, no. 1, pp.
119-137, 2000.
[10] C. Galambos, J. Kittler, and J. Matas, “Gradient Based
Progressive Probabilistic Hough Transform,” IEEE Proc. Vision,
Image and Signal Processing, vol. 148, no. 3, pp. 158-165, 2001.
[11] A. Etemadi, “Robust Segmentation of Edge Data,” Int. Conf.
on Image Processing and its Applications, pp. 311-314, 1992.
[12] A. Desolneux, L. Moisan, and J.M. Morel, “Meaningful
Alignments,” International Journal of Computer Vision, vol. 40,
no. 1, pp. 7-23, 2000.
[13] A. Desolneux, L. Moisan, and J.M. Morel, From Gestalt
Theory to Image Analysis: A Prob. Approach, Springer, 2008.
[14] J.B. Burns, A.R. Hanson, and E.M. Riseman, “Extracting
Straight Lines,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 8, no. 4, pp. 425-455, July 1986.
[15] J.R. Beveridge, C. Graves, and C. Lesher, “Some Lessons
Learned from Coding the Burns Line Extraction Algorithm in the
Darpa Image Understanding Environment,” Technical Report CS-
96-125, Comp. Science Dept., Colorado State University, 1996.
 [16] R.G. von Gioi, J. Jakubowicz, J.M. Morel, and G. Randall,
“LSD: A Line Segment,” technical report, Centre de
Mathematiques et de leurs Applications (CMLA), Ecole Normale
Superieure de Cachan (ENS-CACHAN), 2008.
[17] R.G. von Gioi, J. Jakubowicz, J.M. Morel, and G. Randall,
“On Straight Line Segment Detection,” Journal of Mathematics
Imaging and Vision, vol. 32, no. 3, pp. 313-347, November 2008.
[18] R.G. von Gioi, J. Jakubowicz, J.M. Morel, and G. Randall,
“LSD: A Fast Line Segment Detector with a False Detection
Control,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 32, no. 4, pp. 722-732, April 2010.
[19] C. Topal, C. Akinlar, and Y. Genc, “Edge Drawing: A
Heuristic Approach to Robust Real-Time Edge Detection,”
Proceedings of the ICPR, pp. 2424-2427, August 2010.
[20] C. Topal, and C. Akinlar, “Edge Drawing: A Real-Time Edge
Segment Detector with a False Detection Control,” submitted for
publication, 2011.
[21] Least Squares Line Fitting,
http://en.wikipedia.org/wiki/Least_Squares
[22] LSD: a Line Segment Detector,
http://www.ipol.im/pub/algo/gjmr_line_segment_detector/
[23] Edge Drawing, http://ceng.anadolu.edu.tr/cv/EdgeDrawing
[24] EDLines, http://ceng.anadolu.edu.tr/cv/EDLines

2011 18th IEEE International Conference on Image Processing

2896

