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ABSTRACT 

 
We propose a linear time line segment detector that gives 
accurate results, requires no parameter tuning, and runs up 
to 11 times faster than the fastest known line segment 
detection algorithm in the literature; namely, the LSD by 
Gioi et al. The proposed algorithm also includes a line 
validation step due to the Helmholtz principle, which lets it 
control the number of false detections. Our detector makes 
use of the clean, contiguous (connected) chain of edge 
pixels produced by our novel edge detector, the Edge 
Drawing (ED) algorithm; hence the name EDLines. With its 
accurate results and blazing speed, EDLines will be very 
suitable for the next generation real-time computer vision 
applications. 
 

Index Terms— Real-Time Line Segment Detection, 
Edge Drawing Algorithm, LSD, Helmholtz Principle, NFA 
 

1. INTRODUCTION 
 
Line segment detection is an important problem in image 
processing and computer vision with many applications 
including image compression [1], crack detection in 
materials [2], stereo-matching [3], robot-navigation [4, 5], 
roadbed detection, among many others.  
 
Traditional line segment detection algorithms first compute 
an edge map (typically by the famous Canny edge detector 
[6]), then apply the Hough transform [7, 8], and finally 
extract all lines that contain a certain number of edge points. 
Lines are broken into segments using gap and length 
thresholds. These methods are not only too slow, but they 
also combine non-contiguous line segments together, and 
usually produce a lot of false detections. 
 
Progressive Probabilistic Hough Transform [9, 10] has been 
proposed to solve some of the shortcomings of the 
traditional Hough transform. Although it manages 
controlling the number of false detections, it fails to detect a 
lot of true positives, and it is extremely slow to be of any 
real use. 
 
Etemadi [11] proposed a parameterless line detector that 
detects both line segments and arcs. Similarly, Burns et al. 

[14, 15] introduced a line segment detector that works by 
combining pixels having the same orientation. Although 
both of these algorithms produce well-localized line 
segments, they also generate a lot of false positives, 
especially in images with noisy backgrounds or those 
containing complex structures such as trees, grass, cloudy 
sky, or similar anisotropic structures. 
 
Desolneux et al. [12, 13] proposed a parameterless line 
detector that controls the number of false positives. Their 
idea is to count the number of aligned pixels in a certain 
orientation and accept the set of pixels as a line segment if 
the observed structure is perceptually meaningful. This is 
called the Helmholtz principle from Gestalt theory [13], and 
is used as the line validation method. The problem with 
Desolneux’s method is that it generates long lines which in 
fact should be broken down into several line segments, and 
that it is very computationally intensive, thus very slow. 
 
By extending Burns’s work for line segment generation and 
combining it with Desolneux’s line validation method using 
the Helmholtz principle [13], von Gioi et al. [16, 17, 18] 
have recently proposed a parameterless line detection 
algorithm, called the Line Segment Detector (LSD), that 
produces accurate line segments, and also controls the 
number of false detections. Although LSD produces good 
results for most types of images, it fails especially in images 
where the background contains a lot of white noise, and its 
running time is still prohibitive; which makes it unsuitable 
for the next-generation real-time applications. 
 
In this paper, we propose a fast, parameterless line segment 
detector that produces accurate results, and runs up to 11 
times faster than the fastest known edge detector; namely, 
the Line Segment Detector (LSD) by von Gioi et al. [16, 17, 
18]. Our detector also includes a line validation step due to 
the Helmholtz principle [13], which lets it control the 
number of false detections. 
 
The proposed line detector is comprised of 3 steps: (1) 
Given a grayscale image, we first run our fast, novel edge 
detector, the Edge Drawing (ED) algorithm [19, 20, 23], 
which produces a set of clean, contiguous chains of pixels, 
which we call edge segments. Edge segments intuitively 
correspond to object boundaries. (2) Next, we extract line 
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segments from the generated pixel chains by means of a 
straightness criterion, i.e., by the least squares line fitting 
method [21]. (3) Finally, a line validation step due to the 
Helmholtz principle [13, 18] is used to eliminate false line 
segment detections. 
 
The rest of the paper is organized as follows: In section 2, 
we briefly describe our edge detector, the Edge Drawing 
(ED) algorithm [19, 20]. Section 3 describes how we fit 
lines to pixel chains produced by ED. Section 4 describes 
our line validation step, and section 5 compares the 
performance of EDLines to others in the literature through 
experimentation.  
 

2. EDGE DETECTION BY EDGE DRAWING 
 

Edge Drawing (ED) is our recently-proposed, novel, fast 
edge detection algorithm [19, 20]. What makes ED stand out 
from the existing edge detectors, e.g., Canny [6], is the 
following: While the other edge detectors give out a binary 
edge image as output, where the detected edge pixels are 
usually independent, discontinuous entities; ED produces a 
set of edge segments, which are clean, contiguous, i.e., 
connected, chains of edge pixels. Thus, while the output of 
the other edge detectors requires further processing to 
generate potential object boundaries, which may not even be 
possible or result in inaccuracies; ED not only produces 
perfectly connected object boundaries by default, but it also 
achieves this in blazing speed compared to other edge 
detector [19]. 

 
Given a grayscale image, ED performs edge detection in 

4 steps: 
(1) The image is first passed through a filter, e.g., 

Gauss, to suppress noise and smooth out the image. 
(2) The next step is to compute the gradient magnitude 

and direction at each pixel of the smoothed image. 
Any of the known gradient operators, e.g., Prewitt, 
Sobel, Scharr, etc., can be used at this step. 

(3) In the third step, we compute a set of pixels, called 
the anchors, which are pixels with a very high 
probability of being edgels. Intuitively, these points 
correspond to pixels where the gradient operator 
produces maximal values, i.e., the peaks of the 
gradient map. 

(4) Finally, we connect the anchors computed in the 
third step by drawing edges between them; hence the 
name Edge Drawing (ED). The whole process is 
similar to children’s boundary completion puzzles, 
where a child is given a dotted boundary of an 
object, and s/he is asked to complete boundary by 
connecting the dots. Starting from an anchor (dot), 
ED makes use of the neighboring pixels’ gradient 
magnitudes and directions, and walks to the next 
anchor by going over the gradient maximas. If you 
visualize the gradient map as a mountain in 3D, this 

is very much like walking over the mountain top 
from one peak to the other.  
 

(a)  (b)  

(c)  (d)  
Figure 1: (a) A grayscale image containing 4 rectangles, 

(b) Gradient map, (c) Anchor points, (d) Final edge map. 
 
Figure 1 shows ED in action on a 128x128 pixels 

grayscale image. Figure 1(b) shows the gradient map, where 
white pixels correspond to high gradient values (mountain 
tops). Figure 1(c) shows an example set of anchors, which 
correspond to peaks of the gradient map, and clearly depict 
the boundaries of the rectangles in the image. The final edge 
map, shown in Figure 1(d), is obtained by linking the 
anchors (dots) (refer to [19] for a detailed description of 
how ED links the anchors to obtain the final edge map). As 
mentioned before, ED not only produces a binary edge map 
similar to other edge detectors, but it also produces a set of 
edge segments, which are connected chain of pixels 
corresponding to object boundaries. In the given example, 
ED generates 4 edge segments, one for the boundary of each 
rectangle. Given these edge segments, all that remains for 
line segment extraction is to go over these pixel chains, and 
fit lines to the pixels. Next section describes how this is 
done. 

 
3. LINE SEGMENT EXTRACTION 

 
Given an edge segment comprised of a contiguous chain of 
edge pixels, the goal of this step is to split this chain into 
one or more straight line segments. The basic idea is to walk 
over the pixels in sequence, and fit lines to the pixels using 
the least squares line fitting method [21] until the error 
exceeds a certain threshold, e.g., 1 pixel error. When the 
error exceeds this threshold, we generate a new line 
segment. The algorithm then recursively processes the 
remaining pixels of the chain until all pixels are processed. 
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                                   Original Image (400x400)         EDLines: 189 lines,11.08 ms          LSD: 180 lines, 75.21 ms 

   
                                  Original Image (500x466)           EDLines: 887 lines,15.79 ms               LSD: 802 lines, 185.65 ms  

   
                       Original Image (600x450)                     EDLines: 722 lines,13.25 ms                           LSD: 700 lines, 135.86 ms  

Figure 3: A comparison of EDLines to LSD on three challanging images. EDLines is 10 times or more faster than LSD while 
producing similar or better line segments. Both algorithms are run on a PC with an Intel 2.2 GHz CPU and 2 GB RAM. 

 

 

Figure 2: Illustration of line segment extraction from a 
contiguous chain of pixels. This chain corresponds to the 
boundary of the top-left rectangle in Figure 1. 
 
Figure 2 illustrates the idea: Here, we see the pixels of the 
edge segment corresponding to the boundary of top-left 
rectangle in Figure 1. Starting from the first pixel of the 

chain, we take a certain number of pixels, e.g., 10, and fit a 
line to these pixels by the least squares line fitting method. 
This initial line determines the current direction of the line 
segment and is illustrated by an arrow in Figure 2. We then 
walk over the remaining pixels of the chain and compute the 
distance of each pixel to the currently fitted line. We would 
add pixels to the current line as long as the mean square 
error stays within a certain bound, e.g., 1 pixel. Intuitively, 
we would continue adding pixels to the current line segment 
until we turn a corner and the direction of the line changes. 
At that point, we output the current line segment and start a 
new one. With this simple algorithm, 4 line segments would 
be extracted from the given chain of pixels as illustrated in 
Figure 2. 
 

4. LINE VALIDATION 
 
Similar to Desolneux [12] and LSD [18], our line validation 
method is based on the Helmholtz principle, which basically 
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states that for a structure to be perceptually meaningful, the 
expectation of this structure (grouping) by chance must be 
very low [13]. This is an “a contrario” approach, where the 
objects are detected as outliers of the background model. As 
shown by Desolneux [12], a suitable background model is 
one in which all pixels (thus the gradient angles) are 
independent. They show that the simplest such model is the 
Gaussian white noise. To make validation by Helmholtz 
principle concrete, Desolneux defines what is called the 
“Number of False Alarms (NFA)” of a line segment as 
follows [12]: Let A be a segment of length “n” with at least 
“k” points having their directions aligned with the direction 
of A in an image of size NxN pixels. Define NFA of A as: 
 

,ሺ݊ܣܨܰ ݇ሻ ൌ 	ܰସ.ሺ1 െ ሻି


ୀ

 

 
An event is called ε-meaningful if itݏ	ܣܨܰሺ݊, ݇ሻ   .ߝ
Desolneux [12] advises setting ε to 1, which corresponds to 
one false detection per image. Given these definitions, we 
validate our line segments as follows: For a line segment of 
length “n”, we compute the gradient angle of each pixel 
along the line segment and count the number of aligned 
pixels “k”. We then compute ܰܣܨሺ݊, ݇ሻ, and accept the line 
segment as valid if ܰܣܨሺ݊, ݇ሻ  1. Otherwise the line is 
rejected. We would also like to note that line validation is an 
optional last step in EDLines, and can be omitted if deemed 
unnecessary. This would further speed up EDLines. 
 

5. EXPERIMENTS 
 
We compared the performance of EDLines [24] to other line 
extraction algorithms in the literature. In this paper, 
however, we compare EDLines only to LSD [22]. This is 
due to the lack of space and LSD being the best line 
segment detector (to the best of our knowledge) in terms of 
speed and performance. Figure 3 shows the results produced 
by EDLines and LSD on three challenging images. In all 
cases, both EDLines and LSD were run with default 
parameters, i.e., without any parameter tuning. It is clear 
from the results that EDLines produces similar or better line 
segments than LSD while running up to 11 times faster. We 
should also note that LSD by default scales the image width 
and height by 0.8; that is, it reduces the original image to 
64% of its size before processing. The results for LSD given 
in Figure 3 are based on this 0.8 scaling parameter. Without 
any scaling, LSD takes much longer to execute, and 
produces many more line segments. 
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