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ABSTRACT

In this paper, we present a novel objective video quality metric that
captures the trade-off between the picture quality and the tempo-
ral resolution of a compressed video. The proposed metric is based
on PSNR, frame rate as well as spatial and temporal activity mea-
sures that are obtained from the video. The content-independency of
the metric makes it useful for the dynamic optimization of wireless
video transmission. With the proposed metric, it is possible to adjust
the trade-off between spatial and temporal qualities such that the user
satisfaction is maximized. Our metric is very accurate, as verified by
statistical analysis with data from subjective tests. We integrate the
metric into a real-time wireless video transmission system and show
in our experiments that the system, with our metric’s ability to pre-
dict perceptual quality, can deliver significantly improved perceptual
quality for arbitrary videos over a wide range of channel conditions.

1. INTRODUCTION

The transmission of video over wireless channels faces many chal-
lenges, including limited transmission capacity, time-varying chan-
nel conditions and stringent delay requirements of video applica-
tions. Extensive studies have been performed to improve the qual-
ity of video services, mostly by adapting video coding and schedul-
ing parameters to channel characteristics. In order to achieve higher
adaptivity, some schemes involve both spatial and temporal quality
adjustment, such as [1] for scalable video streaming and our prior
work [2] for low-delay live streaming, where one needs to decide
how to trade off spatial and temporal quality to achieve the best pos-
sible overall perceptual quality. However, most of the studies con-
sidering joint control of spatio-temporal quality are based on PSNR
as the quality metric, which has been shown to have poor correla-
tion with quality evaluation results from subjective tests in such con-
text [3]. Other objective quality metrics, such as those described
in [4], although they show higher accuracy than PSNR for videos
with spatial quality impairments, are not suitable either because they
do not consider the impairments caused by frame rate changes.
Various prior works studied the impact of frame rate changes
on perceptual quality. Some focus on modeling the temporal im-
pact alone without any spatial quality impairment (e.g., [5]). The
quality metric proposed in [3] considers both quantization and frame
rate. It is a weighted sum of PSNR and frame rate reduction, where
the weight is based on a motion measure. However, this metric ig-
nores the content-dependency of the PSNR’s impact on the overall
quality, and therefore is content-dependent. Without including addi-
tional parameter(s), the metric can not provide accurate quality pre-
dictions when videos with different characteristics are involved. In
addition, the motion measure, based on motion vector magnitude,
depends strongly on the motion estimation (ME) scheme used in the
video codec. Another PSNR-based metric is proposed in [6], which
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is the product of a spatial quality term based on PSNR and a tempo-
ral correction factor. There are two parameters in this metric that still
need to be determined for each video individually, rendering the met-
ric content-dependent and inapplicable in an automatic system. The
metric in [6] is extended in [7] by estimating the metric parameters
using content features, which makes the metric content-independent.
In this paper, we propose a novel PSNR-based video quality
metric that considers both spatial and temporal quality impairments,
and integrate the metric into the real-time wireless video transmis-
sion system described in [2]. All the metric parameters are either
constants, or parameters that can be calculated directly from the
video, which makes the metric content-independent and useful for
automatically exploiting the trade-off between spatial and temporal
quality. The proposed metric in this paper has some structural sim-
ilarity with the metric in [7]. In comparison to [7], however, our
metric has only two standard video activity measures that can be
easily computed (four measures with significantly higher complex-
ity need to be computed in [7]), and therefore is more suitable for
real-time applications. In addition, the metric in [7] is dependent
on the ME scheme in the video codec — a different ME configura-
tion would require a new set of metric coefficients; our metric has
no codec-dependent parameters. Our metric predicts the perceptual
quality very well, significantly better than the metric in [3] and as
well as the metric in [7] for our test dataset. With the integration of
the proposed metric, our system in [2] operates with very high chan-
nel and content adaptivity, providing superior perceptual quality for
arbitrary video content over a wide range of channel conditions.

2. SUBJECTIVE QUALITY EVALUATION

To find out how spatial and temporal quality affect the overall per-
ceptual quality, we conducted a subjective test using three source
videos (SRC) with various spatial and temporal characteristics:
Mother&Daughter (MD), Foreman (FM) and Football (FB). The
SRCs are in CIF (352x288) resolution and have an original frame
rate (FR) of 30 fps. Each SRC is temporally downsampled to 15,
10 and 7.5 fps to generate four different temporal quality levels.
Then for each temporal quality level, we encode the video using an
MPEG-4 video codec to generate three different spatial quality lev-
els, with average PSNR at about 38dB, 34dB and 31dB. Since this
PSNR value only indicates the spatial quality level, it is referred to
as SPSNR. Each video is encoded in IP...P structure with a constant
quantization parameter (QP) that results in one of the spatial quality
levels. After encoding, frame repetition is performed so that each
processed video sequence (PVS) has the same duration (8 seconds).

The SAMVIQ method [8], which is specifically designed for
multimedia contents, is adopted to collect subjective quality scores.
We choose SAMVIQ because it can provide more accurate and re-
liable subjective data, especially when various types of impairments
are involved. SAMVIQ uses a continuous quality scale graded from
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Fig. 1. DMOS versus frame rate for different test videos.

Table 1. Two-way ANOVA results for full FR videos
| Source of Variation H df [ F-value [ p-value ‘

SPSNR 2 364.1 <0.0001
Content 2 220.3 <0.0001
SPSNR : Content 4 20.5 <0.0001

0 to 100 to provide the subjective scores (MOS). We follow the in-
structions in [8] for designing the subjective test. Twenty seven test
subjects (non-experts between the age of 20 and 26) participated in
our test, which is conducted in a controlled room with identical LCD
monitors. Data from 25 subjects are verified to be valid based on the
screening process described in [8]. For each PVS, a DMOS value
is computed by DMOS = MOS(PVS) — MOS(SRC) + 100,
which is used in our data analysis as the subjective quality rating.

3. VIDEO QUALITY MODELING

3.1. Spatial Quality Modeling

First, we consider only the videos without temporal impairment,
i.e., at 30fps, to study how the perceived spatial quality (DMOS)
changes as a function of SPSNR at full frame rate. We perform a
two-way analysis of variance (ANOVA) with repeated measures on
the subjective data. The ANOVA results are reported in Table 1,
which indicate that both SPSNR and content have significant impact
(p < 0.0001) on the perceived quality. The interaction between
them is also found to be significant (p < 0.0001), indicating that the
impact of SPSNR is content-dependent.

Based on our observations and the ANOVA results, the spatial
video quality (SVQM) is modeled with a logistic function (e.g., [9]):

100
14 e (SPSNR+ws - SA+w¢TA—p)/s’

SVQM =

ey

where S A and T'A measures the spatial and temporal activity of the
video content, respectively. We adopt the spatial and temporal per-
ceptual information measures in [8], slightly modified, in our metric
as SA and T'A, which are defined as:

SA = meaniime{stdspace[Sobel (Fp,)]}, 2)
TA= meantime{Stdspace [Fn - anl]}- (3)

The constants ws, we, p and s are determined by a least-square
non-linear fitting using the subjective data of the considered videos,
which leads to ws = 0.0356, w; = 0.236, u = 36.9, s = 2.59.

3.2. Spatio-Temporal Quality Modeling

We now examine the impact of temporal impairment on the overall
perceived quality. In Fig. 1, we plot DMOS against frame rate at dif-
ferent SPSNR levels for different SRCs. As expected, when frame
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Table 2. Three-way ANOVA results for all videos
Source of Variation H df [ F-value [ p-value ‘

SPSNR 2 783.0 <0.0001
Frame Rate (FR) 3 220.1 <0.0001
Content 2 158.5 <0.0001
SPSNR : Content 4 45.8 <0.0001
FR : Content 6 20.6 <0.0001
SPSNR : FR 6 3.6 0.0016
SPSNR : Content : FR || 12 0.8 0.6367

rate decreases, DMOS becomes lower. DMOS decreases slower for
low-motion SRC like MD and faster for high-motion SRC like FB,
which indicates that the impact of frame rate is content-dependent
and reducing frame rate has stronger negative impact for videos with
higher temporal activity. We can also see that the curves for each
SRC at different SPSNR levels have different slopes, indicating that
the impact of frame rate is dependent on the spatial quality level.
A three-way ANOVA with repeated measures confirms our observa-
tions. From the ANOVA results given in Table 2, we can see that
all three factors (i.e., SPSNR, content and FR) have significant im-
pact (p < 0.0001) on the overall perceived quality. The interac-
tion between FR and content is significant (p < 0.0001), indicating
that the impact of frame rate is content-dependent. The significant
(p = 0.0016) interaction between SPSNR and FR indicates that the
impact of frame rate is also quality-dependent.

Based on the observation that an interaction exists between
spatial quality and temporal quality perception, the spatio-temporal
quality (STVQM) is modeled as the product of the SVQM in (1) and
a temporal quality term:

1+a-TA®

STVQM = SVQM + —————
@ @ l4+a-TAb 297

(C))
where F'R denotes the frame rate and 7'A denotes the temporal ac-
tivity measure in (3). A product form is also adopted in [6] and [7],
but without statistically verifying the interaction. The two constants

a and b are determined by a least-square non-linear fitting using the
subjective data, which leads to a = 0.028,b = 0.764.

3.3. Performance Evaluation

Three statistical measures are used to evaluate the performance of
our proposed metric STVQM: Pearson Correlation (PC), Residual
Mean Square Error (RMSE) and Outlier Ratio (OR). We compare
STVQM to three other metrics: STPSNR, the metric in [3] (referred
to as Feghali) and the VQMTQ metric in [7]. STPSNR here is re-
ferred to as the PSNR averaged over all frames in a PVS, including
the repeated frames in case of frame rate reduction. STPSNR con-
siders both spatial and temporal impairment and is widely used in the
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Table 3. Performance measures for the entire dataset
[ Metric || PC [ RMSE [ OR |
STPSNR || 0.484 19.1 0.83
Feghali 0.471 19.6 0.78
VQMTQ || 0.995 2.82 0
STVQM || 0.994 2.66 0.03

Table 4. Pearson Correlation for individual SRCs
| Metric || MD | FM [ FB [ Average |
STPSNR || 0.978 | 0.863 | 0.929 0.923

Feghali 0.974 | 0.906 | 0.943 0.941
VQMTQ || 0.999 | 0.997 | 0.985 0.994
STVQM || 0.997 | 0.998 | 0.990 0.995
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Fig. 2. Performance evaluation and comparison for STVQM.

literature when frame rate change is present. In our comparison, the
metric coefficients in the Feghali metric are determined by testing
many combinations and picking the one that leads to the best average
correlation coefficient over the three SRCs, similar as done in [3].
For STPSNR and the Feghali metric, a least-square linear mapping
is also performed to map the metrics to the DMOS scale. The metric
coefficients in VQMTQ are determined by a least-square non-linear
fitting using our subjective data. The statistical measures of all four
metrics are summarized in Table 3. We can see that STPSNR and
the Feghali metric fail drastically in predicting DMOS when several
SRCs with different characteristics are considered. The main reason
here is that none of them considers the content-dependency of the
PSNR’s impact. We also summarize the correlation coefficients for
each SRC individually in Table 4. As expected, STPSNR and the
Feghali metric have much better performance for individual SRCs.
In comparison, our proposed metric STVQM achieves very high ac-
curacy in predicting DMOS, significantly better than STPSNR and
the Feghali metric, both for the entire dataset as well as for individ-
ual SRCs. Comparing our metric with VQMTQ, significance tests
show that the difference between VQMTQ and our metric is not sta-
tistically significant — our metric performs as well as VQMTQ, with
the advantages discussed in Section 1. A graphical presentation of
the metric performance is provided in Fig. 2, where for 36 different
test videos (12 quality levels for MD, FM and FB), DMOS with its
95% confidence interval (CI) and the metric predictions are plotted
(for clarity, the results for VQMTQ are not plotted here).
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4. APPLICATION TO WIRELESS VIDEO TRANSMISSION

To show the effectiveness of our proposed video quality metric in
real systems where the trade-off between spatial and temporal qual-
ity can be exploited to achieve best possible overall perceptual qual-
ity, we integrate our metric in the real-time wireless video trans-
mission system presented in our prior work [2]. One of the main
ideas proposed in [2] is to integrate retransmission into a video trans-
mission system without introducing any additional delay, which is
achieved by dynamically adjusting the resource allocation between
source coding and retransmission. Both quantization adjustment and
frame skipping are considered in the resource allocation. The trade-
off between spatial and temporal quality is exploited in two places
where decisions need to be made. The first one is to decide (Decision
1), before a video frame is encoded, whether we should use a coarser
quantization or skip the next frame in order to make resources avail-
able for potentially necessary retransmissions. It is similar to a rate
control scheme considering both quantization and frame skipping.
The second place is after transmitting a frame in its allocated time
slot(s). As some parts of the frame may still be lost (due to unpre-
dictable channel variations), we need to decide (Decision II) whether
we should just conceal the lost parts (sacrificing the spatial quality),
or skip the next frame (sacrificing the temporal quality) and con-
tinue retransmitting the lost packets. In [2], the decisions are made
in a heuristic manner based on thresholds that only involve channel
statistics. Since the trade-off between spatial and temporal quality is
content-dependent, the best decisions should be different for differ-
ent contents. In order to make the best decisions automatically, we
integrate our quality metric into the decision making and select the
option that leads to the best predicted perceptual quality.

In our experiments, Decision I is made every second, intended
to adapt to slow channel changes; Decision Il is made every frame,
intended to adapt to fast channel changes. Since we need to make
Decision I before the encoding, SPSNR is estimated from the source
coding rate using the rate-distortion model in [10], which can be
written as:

D(R) =0 e F, ®)

where D is the MSE, R is the source coding rate, o is the variance
of the source data and « is a content-dependent parameter. In this
work, « is estimated from the video frames in the previous second,
so are SA and TA in (1) and (4). For Decision II, SPSNR is cal-
culated on the concealed frame, SA and TA are computed from the
original frame. Here we assume concealment and quantization have
the same impact on the perceptual quality if they introduce the same
MSE, as in various previous works (e.g., [10]). More sophisticated
combinations, such as a weighted one, could also be implemented.

5. EXPERIMENTAL RESULTS

The performance of the wireless video transmission system for Foot-
ball and Mother&Daughter is shown in Fig. 3. The wireless chan-
nel is assumed to be a packet erasure channel with random packet
losses. Four different system variations are compared: 1) SP: Deci-
sion I is quantization adjustment, Decision II is concealment; 2) TP:
Decision I is frame skipping, Decision II is concealment; 3) ADP:
Decision I is made adaptively based on our quality metric STVQM,
Decision II is concealment; 4) ADP+: both Decision I and II are
made adaptively based on STVQM. We note that adaptive decisions
based on STPSNR would almost always avoid frame skipping, re-
sulting in a performance similar to SP. From the results we can see
that ADP is highly adaptive, both to the channel statistics as well
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Fig. 3. System performance with the proposed perceptual quality metric STVQM. All results are averaged over 10 channel realizations.

as to the video content, as the curves of ADP always follow the op-
tion with better perceptual quality (predicted by STVQM), no matter
at what rate, at what packet error rate or for which content. ADP+
adds another level of adaptability to channel variation and achieves
higher performance gains for channels with higher loss rate and for
videos with larger motion. The system runs automatically in real-
time; there is no parameter that needs to be determined manually to
achieve the best performance for a certain condition.

For the high motion video Football at low rate, TP (frame skip-
ping) delivers better perceptual quality than SP (quantization), indi-
cating that for high motion content at low rate/spatial quality level,
frame skipping is preferred over quantization adjustment. As the
rate/spatial quality level increases, the two curves move towards each
other, meet at medium rate, and then separate at high rate, where SP
delivers better perceptual quality than TP. This indicates that for high
motion content at high spatial quality level, quantization adjustment
is preferred over frame skipping. On the other hand, for the low
motion video Mother&Daughter, frame skipping always leads to a
better perceptual quality. The gain of choosing frame skipping over
quantization adjustment becomes smaller as the rate/spatial quality
level increases, until it saturates at high spatial quality level. We note
that the case with zero packet error rate is equivalent to a rate con-
trol scheme that jointly adjusts quantization and frame rate. So from
our results, we can also see how effective it would be to adopt our
quality metric in applications involving such a rate control scheme.

6. CONCLUSIONS

In this paper, we proposed a perceptual quality metric that considers
both spatial and temporal quality. Statistical analysis with subjec-
tive data has shown that the proposed metric is very accurate. Un-
like most existing metrics, our metric is content-independent, and
therefore can be used to automatically trade off spatial and temporal
quality. We have integrated our metric in a real-time video transmis-
sion system proposed in our prior work. Experimental results have
shown that with our metric’s ability to accurately predict perceptual
quality, the system can deliver improved perceptual quality with high
adaptability to both video content and channel statistics.
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