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ABSTRACT 
 
Gradient vector flow (GVF) and its generalization have been 
widely applied in many image processing applications. The 
high cost of GVF computation, however, has restricted their 
potential applications to images with large size. In this paper, 
motivated by progress in fast image restoration algorithms, 
we reformulate the GVF computation problem as a convex 
optimization model with an equality constraint, and solve it 
using a fast algorithm, inexact augmented Lagrangian 
method (ALM). With fast Fourier transform (FFT), we 
provide a novel simple and efficient algorithm for GVF 
computation. Experimental results show that the proposed 
method can improve the computational speed by an order of 
magnitude, and is even more efficient for images with large 
sizes. 
 

Index Terms — Gradient vector flow, convex 
optimization, augmented Lagrange multiplier, fast Fourier 
transform 
 

1. INTRODUCTION 
 
Active contour models, or snakes, have been extensively 
applied to many image segmentation tasks. Different from 
classical segmentation methods such as edge detection and 
thresholding, an active contour model deforms on the image 
domain to get the desired result by minimizing an energy 
functional which usually involves two components, an 
internal energy or regularization term, and an external 
energy term [1]. An active contour model can provide 
smooth, closed or open contours, and the internal energy 
functional allows incorporating prior knowledge on 
smoothness, shape, and region, which makes active contour 
very popular in medical image segmentation and other 
vision applications. 

In general, active contour models can be classified into 
two categories, parametric and non-parametric (or geometric) 
models. The classical snake model introduced by Kass et al. 
[1] is a parametric active contour model, where the active 
contour is explicitly represented as a parametric curve 

( ) [ ( ), ( )]Ts x s y sv . This model, however, requires the 

initial contour be closed to the true segmentation boundary, 
and exhibits poor convergence to boundary concavities. To 

address these problems, Xu and Prince [2, 3] proposed new 
types of external forces, gradient vector flow (GVF) forces 
and generalized GVF forces. By far, GVF snakes and its 
variants have been widely applied to medical image 
segmentation [2, 4], and have also been extended to other 
image processing problems, e.g., object tracking [5], 
skeletonization [6], image denoising [7], and image 
enhancement [8]. 

Despite its success and popularity, the GVF method 
requires a high computational cost, which has restricted 
their potential applications to images with large sizes. Li and 
Action [9] suggested another external force, vector field 
convolution (VFC), with reduced computation cost. Several 
fast numerical schemes, e.g., multiresolution method [10] 
and multigrid method [11], have been proposed for fast 
GVF computation. Most recently, Boukerroui [12] 
compared several efficient numerical schemes for GVF 
computation, and showed that the alternating direction 
explicit scheme (ADES) may be a suitable alternative to the 
multigrid method.  

Actually, GVF computation can be reformulated as a 
convex optimization model, where similar problems have 
been extensively investigated in image restoration [13, 14], 
compressed sensing [15], and robust principal component 
analysis [16, 17]. One common way to derive an efficient 
algorithm is to split the original problem into several easier 
subproblems. In this paper, we consider two strategies, 
variable splitting [18] and Lagrangian method [13, 16], to 
design a fast GVF computation scheme. For the relationship 
between variable splitting and Lagrangian methods and 
other fast algorithms, e.g., split-Bregman and 
Douglas-Rachford splitting (DRS), see [18]. Experimental 
results show that the proposed method can improve the 
computational speed by an order of magnitude, and is even 
more efficient for images with large size. 

The remainder of the paper is organized as follows. 
Section 2 introduces some background knowledge, 
including gradient vector flow and augmented Lagrangian 
method. Section 3 presents the proposed fast GVF 
computation scheme and discusses its implementation 
details. Section 4 provides the experimental results and 
Section 5 ends this paper with a few concluding remarks. 
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2. PREREQUISITES AND RELATED WORK 
 
2.1. Gradient Vector Flow 
 
In [2], given the edge map f(x, y), GVF field is defined as a 
vector field w(x, y) = [u(x, y), v(x, y)] that minimizes the 
following energy functional, 

2 2 2
( ( , ))E x y f f dxdy    w w w ,    (1) 

where | |  denote the vector norm for tensor with 
2 2 2 2 2

x y x yu u v v    w . Based on the calculus of 

variations, the GVF field can be obtained by solving the 
partial differential equation (PDE) problems: 

22( , , ) ( , , ) [ ( , , ) ( , )]t xu x y t u x y t f u x y t f x y     ,  (2) 
22( , , ) ( , , ) [ ( , , ) ( , )]t yv x y t v x y t f v x y t f x y     ,  (3) 

where u(x, y) and v(x, y) can be obtained in parallel. Xu and 
Prince [2] adopted an explicit difference scheme. 
Boukerroui [12] tested several other numerical schemes, 
including the alternating direction explicit scheme (ADES), 
the additive operating splitting (AOS), and the locally one 
dimensional (LOD) methods, and showed that ADES was 
more appropriate for fast GVF computation. 

Using the calculus of variations, the solution to (1) can 
be directly computed by seeking the solution to the 
following Euler-Lagrange equations, 

220 ( , ) [ ( , ) ( , )]xu x y f u x y f x y     ,       (4) 
220 ( , ) [ ( , ) ( , )]yv x y f v x y f x y     .       (5) 

In [11], Han et al. proposed an efficient GVF computation 
scheme which applies the full multigrid algorithm (FMG) to 
solve the above equations.  
 
2.2. Variable Splitting and Augmented Lagrangian 
 
2.2.1. Variable Splitting 
Consider the following type of unconstrained optimization 
problem, 

min ( ) ( )
n

f g



u

u Gu


,                (6) 

where d nG  . Rather than directly solving the above 
problem, variable splitting reformulates the problem (6) as 
an equivalent constrained optimization problem, 

,
min ( ) ( ),      subject to  

n d
f g

 
 

u v
u v v Gu

 
,      (7) 

by introducing an auxiliary variable v. In several image 
processing applications [13,14,15], it is much easier to solve 
problem (7) than to solve the unconstrained problem (6).  

 
2.2.2. Augmented Lagrangian Method 
Consider a convex optimization problem with equality 
constraints, 

min ( ),      subject to  0
n

F


 
z

z Az b


,         (8) 

where pb   and p nA  . The augmented Lagrangian 

(AL) function is then defined as, 
2

2
( , , ) ( ) ( )

2
TF

     z λ z λ b Az Az bL ,     (9) 

where pλ   is a vector of Lagrangian multiplier and 
0   is the AL penalty parameter. As described in 

Algorithm 1 [14], the augmented Lagrangian method (ALM) 
[19], also known as the method of multipliers (MM), solves 
problem (9) by iteratively updating z, λ , and  ,.until 
some convergence criterion is satisfied.  

 

Algorithm 1: ALM/MM 

1. Initialize z0, 0, 0 > 0,  > 0 

2. while not converged 
3.    1 arg min { ( , , )}k k k  zz z λL  

4.    1 1( )k k k k   λ λ Az b  

5.    k+1 = k 

6.    k  k + 1 

7. end while 
  

 
2.2.3. Inexact Augmented Lagrangian Method 
One can use ALM to solve the problem (7) by defining F(z) 
= f(u) + g(v) and choosing 

[ , ] ,       0,       [ , ]T T T   z u v b A G I .      (10) 

Here Steps 3 and 4 of Algorithm 1 become, 
21

1 1 2,
( , ) arg min ( ) ( ) ( )

2
Tk

k k kf g
 

 
       
 u v

u v u v Gu v λ v Gu (11) 

1 1 1( )k k k k k    λ λ Gu v .           (12) 

For most problems, the solution to (11) is not trivial. 
Fortunately, we can use the inexact ALM (IALM) algorithm, 
which is also called the alternating direction method, to 
iterate between updating uk+1 by keeping v fixed and 
updating vk+1 by keeping u fixed, and still guarantee the 
convergence and optimality [16,19]. The detail of IALM is 
described in Algorithm 2. 

Algorithm 2: IALM 

1. Initialize z0, 0, 0 > 0,  > 0 

2. while not converged 

3.    21
1 2

arg min ( ) ( )
2

Tk
k k kf

 


     
 u

u u Gu v λ Gu  

4.    21
1 1 2

arg min ( )
2

Tk
k k kg

 
 

     
 v

v v Gu v λ v  

5.    1 1 1( )k k k k k    λ λ Gu v  

6.    k+1 = min(k, max) 

7.    k  k + 1 

8. end while 
  

 
3. FAST GVF COMPUTATION 

 
The discrete version of energy functional can be rewritten 
as, 
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 2 22 2
( , )

              ( ) ( ) ( ) ( )

x y x y

T T
x x y y

E    

     

u v D v D v D u D u

u f M u f v f M v f
,  (13) 

where Dx and Dy are the matrix representations of the 
gradient operator in x and  y directions, respectively, and 
M is the diagonal weight matrix with 

2 2( , ) ( ) ( )x yM i i f i f i  . u and v can be solved individually 

by solving the following two optimization problems:  

 22
arg min ( ) ( )T

x y x x    
u

u D u D u u f M u f ,  (14) 

 22
arg min ( ) ( )T

x y y y    
u

v D v D v v f M v f .  (15) 

Using variable splitting, the problem (14) can be 
formulated as an equivalent constrained problem, 

 22

,
arg min ( ' ) ( ' )

                  subject to  

T
x y x x


    

 
u u

u D u D u u f M u f

u u
, (16) 

The augmented Lagrangian function of (16) is given by, 

 22

1 2

2

2

( , , , , ) ( ) ( )

                             ( )
2

T
x y x x

T

 



      

    

u u λ λ D u D u u f M u f

λ u u u u

L
. (17) 

Here Step 3 of Algorithm 2 becomes 
2

1 2
arg min ( )

2
T T T T k

k x x y y k k

     
u

u u D D D D u λ u u u .  (18) 

Similar to [13], with the help of fast Fourier transform 
(FFT), we can derive the closed-form solution of problem 
(18), 

1
1

( )

2 ( )
k k k

k T T
x x y y k

FFT
FFT

FFT


 




    
   

λ u
u

D D D D I
.       (19) 

Step 4 of Algorithm 2 becomes 
2

1 1 2'
arg min( ) ( )

2

TT k
k x x k k


          

u
u u f M u f λ u u u ,  (20) 

and the closed-form solution of 1k u  is, 

  1

1 12 (2 )k k x k k k 
     u M I Mf λ u .          (21) 

Finally, we describe the IALM-based algorithm for 
computing u in Algorithm 3. We can also apply this 
algorithm to compute v by solving the problem (15).  

 

Algorithm 3: IALM-GVF 

1. Initialize 0u , 0u , 0, 0 > 0,  > 0 

2. while not converged 

3.    1
1

( )

2 ( )
k k k

k T T
x x y y k

FFT
FFT

FFT


 




    
   

λ u
u

D D D D I
 

4.      1

1 12 (2 )k k x k k k 
     u M I Mf λ u  

5.    1 1 1( )k k k k k    λ λ u u  

6.    k+1 = min(k, max) 

7.    k  k + 1 
 

 

3.1. Implementation Details 
 

In the initialization, we choose 
0 x
u f , 0 x u f . Although 

the IALM-GVF algorithm converges for any 0 > 0, the 
values of 0 and  do affect the convergence speed of the 
algorithm. In our work, for an m  m image, we empirically 
set 0 = 0.5/m, max = 1000 and  = 2.  

Fast Fourier transform usually involves some 
assumptions on boundary conditions, e.g., periodic or 
reflective. To alleviate the adverse influence of boundary 
condition, we first make a larger zero image g with the size 
of 1.14m  1.14m, and then put the edge map f at the centre 
of the image g. Finally, we use IALM-GVF on the larger 
image g to compute the GVF field w(x, y) = [u(x, y), v(x, y)]. 

There are several possible choices of the stopping 
criteria of IALM-GVF. One may stop the iteration when the 
following condition [14] is met, 

1 2

1 2

k k

k








z z

z
,              (22) 

by choosing  to be a sufficient small positive value. 
 

4. EXPERIMENTAL RESULTS AND DISCUSSION 
 

In this section, we used a set of human lung CT images 
to evaluate the computational efficiency of IALM-GVF, and 
compared the speed of original GVF, multigrid GVF 
(MGVF), and IALM-GVF. It should be noted that, MGVF 
is implemented in C, while IALM-GVF and original GVF in 
MATLAB. Thus, the speed difference between IALM-GVF 
and MGVF can only be used for reference. 

We compare the computational cost and the number of 
iterations (iter) of the three GVF computation methods 
under the stopping criterion that the relative difference 
between the current solution and the converged solution is 
less than 0.001. We used a set of 2D human lung CT images 
with sizes from 256 × 256 to 1024 × 1024. The GVF 
regularization coefficient of the three methods is chosen to 
be 0.2. One image from the set is shown in Fig. 1.  

 
Table1: Comparison of computational speed 

 Original GVF MGVF IALM-GVF 
Size Time, s Iter Time, s Iter Time, s Iter

256256 15.26 350 0.188 3 0.256 5 
512512 205.1 1024 0.670 3 0.962 5 

10241024   3.153 3 3.926 5 
 
The results are summarized in Table 1. Because the 

original GVF is hard to converge when the size of the image 
is higher, here we do not report the results of the original 
GVF on the 1024 × 1024 images. Compared with the 
original GVF, IALM-GVF can improve the computational 
speed by one or several orders of magnitude, and 
IALM-GVF would be more efficient when the size of image 
increases. One can see that IALM-GVF is a little slower 
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than MGVF. As we have mentioned, since MGVF is 
implemented in C while IALM-GVF in MATLAB, one 
cannot draw the conclusion that MGVF would be faster than 
IALM-GVF. Besides, IALM-GVF is simple to be 
understood and is easy to be implemented, which also 
makes IALM-GVF a suitable alternative of MGVF. 

 
5. CONCLUSION 

 
Motivated by recent progress in fast image restoration 
algorithms, based on variable splitting and augmented 
Lagrangian method, we proposed a novel inexact ALM 
algorithm for fast GVF computation (IALM-GVF). 
Experimental results show that IALM-GVF can improve the 
computational speed of the classical scheme [2] by an order 
of magnitude, and is even more efficient for images with 
large sizes. Moreover, IALM-GVF is guaranteed to 
converge to the global optimal solution, and is simple and 
easy to be implemented, which makes IALM-GVF a 
suitable alternative of multigrid GVF. In the future, we will 
implement IALM-GVF in C, and further modify and extend 
it to solve the generalized GVF computation problem. 
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Fig. 1 GVF computation on a human lung CT image: (a) 256 × 256 image, (b) edge map, and (c) part of the GVF field 
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