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ABSTRACT

Spoofing face recognition systems with photos or videos of someone
else is not difficult. Sometimes, all one needs is to display a picture
on a laptop monitor or a printed photograph to the biometric system.
In order to detect this kind of spoofs, in this paper we present a so-
lution that works either with printed or LCD displayed photographs,
even under bad illumination conditions without extra-devices or user
involvement. Tests conducted on large databases show good im-
provements of classification accuracy as well as true positive and
false positive rates compared to the state-of-the-art.

Index Terms— Liveness Detection, Face Spoofing Detection,
Counter-Spoofing

1. INTRODUCTION

Biometrics refers to technologies designed either to verify or rec-
ognize the identity of a person based on one or more physical or
behavioral characteristics, and has been widely used in authentica-
tion systems. Such methods, however, can be fooled (spoofed) by
an identity thief, specially the ones based on face recognition, where
the thief can obtain a photo of an authentic user from a significant
distance, or even obtain it from the Internet.

In an operational scenario, a 2-D image-based facial recogni-
tion system can be spoofed by simple tricks. For instance, instead
of showing one’s own face to the biometric system, an unautho-
rized person can display a photo of an authorized counterpart either
printed on a piece paper, on a laptop, or even on a cell phone screen.

Most of the current face recognition research efforts strives for
dealing with the “image matching” part of the system. Consequently,
some poorly-designed systems have been shown to be fooled by
very crude line drawings of a human face [1]. Although there has
been important advances regarding spoofing detection, this research
branch is still an open problem. In addition, non-intrusive methods
without extra devices and human involvement are preferable in prac-
tice, given that they could be integrated into an existing face recog-
nition system, where usually only a generic webcam is deployed [2].

In this paper, we extend a very powerful spoofing detection sys-
tem recently introduced by Tan et al. [2]. In their work, the authors
present a face liveness detection system using a single image. Al-
though the authors presented effective results, in this paper we ex-
tend their work so as to be robust to bad illumination conditions. Our
experiments performed on the same data set as Tan et al’s present
more than 50% reduction in the classification/detection error.
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2. STATE-OF-THE-ART

Some anti-spoofing techniques for facial recognition systems rely on
Fourier analysis, which can differentiate between live faces and cer-
tain types of spoofs, such as printed images, based on the differences
in the high frequencies of the Fourier spectra [2, 3].

Another branch of research has focused on motion detection
such as eye blinking and involuntary movements of parts of the face
and head [4, 5]. However, these spoofing detection methods are still
impacted by simple head tilts simulating head movement or by short
video sequences displaying an authentic user. Other used facial cues
include the surface texture of the skin. With such an analysis, we can
calculate certain measures to characterize the optical qualities of the
facial skin of live people and compare to non-live ones [6].

If extra devices are available, near infrared or thermal images
can be considered [7]. The 3-D information can also be used to
provide additional protection against spoof attempts over such de-
vices such as 3-D cameras or multiple 2-D cameras [8]. If there
is user involvement, we can take advantage of multi-modal informa-
tion (e.g., voices or gesture) and various challenge-response methods
(e.g., asking the user to blink, or smile) [2].

Besides the face liveness detection, one can focus on the secu-
rity of biometric templates using a user-specific key to generate a
random matrix to distort the face template, so that a “stolen” face
image without the key will be almost of no use [9].

Although there has been important advances regarding spoofing
detection such as the aforementioned ones, this research branch is
still an open problem. Two of the most important challenges nowa-
days refer to: (1) the need of designing and deploying non-intrusive
methods without extra devices and human involvement; and (2) de-
signing detection methods robust to changes in pose and illumina-
tion. In this paper, we deal with the latter problem: to detect spoofs
under challenging illumination conditions without the need of extra
devices or user involvement.

3. PROPOSED SOLUTION

One way to improve liveness detection without extra devices or user
involvement is to recognize when the image (photo or video) comes
from a laptop or cell phone screen instead of a real human [2].

Although Tan et al. have presented very effective results in their
most recent work [2], the authors overlooked a problem often found
in an operational scenario: bad illumination conditions.

In this paper, we extend their method to deal with images even
under hard illumination conditions either for spoof attempts coming
from a laptop display or high-quality printed images.

3.1. The Basic Model

The image of a photograph shown on an LCD screen taken from a
camera is intuitively the image of a real face, but passes through the
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camera system twice and the projection display once. The bright-
ness of the LCD screen affects the recaptured image in a way that
the high-frequency regions (borders) become susceptible to a “blur-
ring” effect due to the pixels with higher values brightening their
neighborhood. This makes the recaptured images show less borders
than their real counterparts.

In this paper, we explore such information in order to detect
whether an image is a spoof or not. For that, we analyze the image
similar to [2], using a Difference of Gaussian (DoG) filter, which is a
bandpass filter that uses two Gaussian filters with different standard
deviations as limits. The idea is to keep the high-middle-frequencies
to detect the borders, but not much, in order to remove the noise
(which is also a high-frequency). Figure 1 depicts an image that
passes through this filter. In this work, we used the same standard
deviations, σ1 = 0.5 and σ2 = 1.0 proposed by Tan et al. [2].

Fig. 1. A DoG filtering example. The original image (far left), its
DoG, the recaptured image (third column) and its DoG (far right).
Notice that the first DoG has more details than the second one.

For the classification stage, we used the standard Sparse Logis-
tic Regression Model similar to the first model in Tan et al. [2]. This
model directly uses the images filtered with the Difference of Gaus-
sian (DoG) method and transformed to the frequency domain as fea-
ture vectors.

The Sparse Logistic Regression Model works as follows: let
x ∈ Rn denote a sample, which is the linearized version of the im-
age under investigation (with n = w × h pixels), and y ∈ {−1, 1}
the associated label defined as ‘+1’ for the recaptured image (i.e.,
spoof) and ‘−1’ for the real image (i.e., non-spoof or live image).
The logistic regression model is given by

Prob(y|x) = 1

1 + exp(−y(wT x + b))
, (1)

where w and b are the values obtained from the logistic loss mini-
mization (training step) and Prob(y|x) is the conditional probability
of class y = +1 given a sample x, meaning the sample x is a recap-
tured image. The average logistic loss is given by

loss(w, b) = 1

m

m∑
i=1

log(1 + exp(−yi(wT xi + b))), (2)

which is a smooth and convex function. We can determine w and b
by minimizing the average logistic loss: minw,bloss(w, b), leading to
a smooth convex optimization problem. There are efficient solvers
for optimizing this problem. In our case, we solve such problem for
w and b using the logistic loss method with the L1-norm regular-
ization in SLEP Package [10]. Please refer to [10] for more details
about such an optimization problem.

The above model yields good classification results. Notwith-
standing, it is not well suited to directly analyze images under bad
illumination conditions given that the DoG filtering is not enough
to rule out the illumination artifacts and properly detect the image
borders. We have found that different parts of an image behave dif-
ferently under illumination variations (e.g., suffering partial occlu-
sions and shadows) and a standard histogram normalization is not

enough to solve such problems. Therefore, we need to analyze im-
age regions adaptively correcting each region according to their local
properties in order to maximize the classification detection rate at the
final stage.

3.2. Dealing with Bad Illumination

In an operational scenario, the illumination conditions vary greatly,
many times causing shadows on parts of the face. These darker re-
gions of the image may influence the spoof detectiom method we
described in Section 3.1, mainly because the DoG filtering does not
detect the borders properly under bad illumination conditions (See
Fig. 2 for an example).

Fig. 2. Example of an image after the DoG filtering stage for the
same person under good illumination (left) and bad illumination con-
ditions (right). The bad illumination causes a shadow on the left half
of the face preventing DoG filtering from finding the correct edges.

To minimize this effect and improve the feature discriminability,
we pre-process the image in order to homogenize it as a whole, so
their borders could be easier detected and the illumination changes
become more controlled. For that, the first obvious solution is to
use a simple histogram equalization. However, this method is highly
sensitive to images with unbalanced dark and bright parts, such as
many images of one of the difficult data sets we use in this paper.
The Yale Face Database B contains images whose bright parts get
even brighter, loosing edges, and the dark ones remain dark, keeping
the image unbalanced and decreasing the edges response found by
the DoG filter. Figure 3 shows an example of this effect.

Given that the illumination changes affect the image with dif-
ferent degrees and in a localized manner, in this paper we use the
contrast-limited adaptive histogram equalization (CLAHE) [11]
approach to deal with these changes. CLAHE operates on small
regions in the image, called tiles. Each tile’s contrast is enhanced,
so that the histogram of the output region approximately matches
a specified distribution: Uniform (resulting on a flat histogram),
Rayleigh (resulting on a bell-shaped histogram), or Exponen-
tial (resulting on a curved histogram). For instance, using the
Rayleigh distribution, the updated value of a pixel p considering
a tile with cumulative probability distribution P (f) is given by
pnew = (2α2ln( 1

1−P (f)
))−0.5.

The neighboring tiles are then combined using bilinear interpo-
lation to eliminate artificially induced boundaries. The contrast can
be limited to avoid amplifying eventual noise and to prevent over-
saturation of the image, specifically in homogeneous areas. Without
this limit, the technique could produce results that, in some cases,
are worse than the original image. Figure 4 shows an example of an
image that goes through this adaptive histogram equalization.

The method relies on the choice of a three parameters: (1) num-
ber of tiles (higher values lead to better results at the cost of a longer
computational effort); (2) contrast enhancement limit (higher val-
ues result in more contrast); and (3) alpha value, α (related to the
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Fig. 3. Simple histogram equalization (middle) and the respective
DoG filter response (far right) of the input image on the left.

Fig. 4. Image with adaptive histogram equalization and its DoG.

Rayleigh and Exponential distributions). In the spoofing detection
scenario, a good tradeoff on these parameters can easily be calcu-
lated using a small training set with normal and recaptured images
under varying illumination changes.

4. EXPERIMENTS AND DISCUSSION

4.1. Databases

To validate the proposed ideas and compare results to the state-
of-the-art, we used two data sets: the first one is the Yale Face
Database B [12], which comprises 640 real faces, taken from 10
test subjects with 64 different illumination conditions. The use of
this data set is explained bellow. The other data set is the NUAA
Imposter Database, used by Tan et. al. [2], which comprises 5,105
real faces and 7,509 impostor faces (real faces recaptured after print-
ing). We used Tan et. al’s (NUAA Imposter) data set to validate our
contribution and compare it to Tan et. al’s. [2] original results.

To investigate the spoofing detection method with respect to
recaptured images from LCD monitors, we set up a recapture ex-
periment to collect images from a 50cm-distance from an LCD
screen. For that, we recaptured the Yale Face Database B us-
ing three LCD monitors, an LG Flatron L196WTQ Wide 19′′, a
CTL 171Lx 17′′ TFT and a DELL Inspiron 1545 notebook. The
cameras used were a Kodak C813 8.2 megapixels and a Sam-
sung Omnia i900, with 5 megapixels. After the recapture, we
cropped the images to center the faces, resampled to 64 × 64 pix-
els and converted them to grayscale. The final data set comprises
640 real faces and 1,920 LCD spoofs (available under request:
http://www.ic.unicamp.br/∼rocha/pub/communications.html).

4.2. Experiment Setup

In all experiments in this paper, we have performed 10-fold cross
validation. Each feature vector representing an image to be classi-
fied contains the image’s linearized pixels processed according to the
approaches we discussed in the previous sections.

All the training samples are used in the SLEP package [10], and
minimized to yield a weight vector w and the intercept b of the lo-

gistic loss classification method we use. To test an input example,
we simply calculate Equations (1) and (2) using the weight vector w
and the intercept b learned in the training stage.

4.3. Results

As we discussed in Section 3.2, the illumination process requires
the selection of the number of tiles we want to use to normalize the
image locally, the contrast enhancement limit and an α value when
the chosen distribution is other than the Uniform. One can easily find
o good parameter tradeoff automatically using the training examples.
Table 1 shows the Equalization parameters tested.

Table 1. Parameters used for equalization
Distributions Uniform Exponential Rayleigh
# Tiles 4 6 8 10
Contrast limit 0.01 0.03 0.05 0.07 0.1
α (Alpha) 0.3 0.5 0.7 0.9

Table 2 shows the experiment results for the NUAA Original
Database provided by [2]. Excellent results are obtained with the
proposed extension using Rayleigh distribution operating with eight
tiles, contrast limit of 0.07 and α = 0.5. Recall that Table 1 shows
the range of possible values for the normalization parameters which
can easily be computed using the provided training examples. This
experiment shows that the proposed extension captures even slight
changes in illumination (NUAA database only not contains small il-
lumination changes). The proposed method achieves a classification
accuracy mean of µ ∼= 93% or just ε ∼= 7% classification error while
Tan et al. [2] yields a classification error of ε ∼= 13.4% (more than
50% in error reduction).

As a matter of fact, we also observed that using the same
Rayleigh distribution with lower values of α tend to yield worse
classification results. With α = 0.3 the intermediate values of the
pixels tend to be lower, darkening the image and making it more
different to the original image. We also observed that using less
tiles and a contrast limit superior to 0.1 are also not interesting. The
equalization method with four tiles splits the image into big regions,
and may have the same problems with non-adaptive equalization,
which uses the entire image.

Table 2. Experiment results for NUAA Impostor Database.
Tan et al [2] approach v. Proposed Extension for Bad Illumination
Conditions.

Tan et al’s Approach [2]
Min Mean Max STD

Classification Accuracy 85.2% 86.6% 87.5% 0.6%
True Positive Rate 81.9% 82.4% 90.4% 0.6%
False Positive Rate 8.0% 9.3% 18.8% 1.3%

Proposed Extension — Bad Illumination Conditions
8 tiles, Rayleigh Distribution, Contrast Limit = 0.07, α = 0.5.

Min Mean Max STD
Classification Accuracy 92.0% 93.2% 94.5% 0.4%
True Positive Rate 92.6% 93.0% 93.7% 0.4%
False Positive Rate 4.7% 6.7% 8.4% 1.3%
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Table 3 presents the classification results for the Yale Recaptured
Database. This is a database with very difficult illumination condi-
tions which contains normal as well as recaptured images from LCD
screens (see Section 4.1). The data set comprises darker images than
in the NUAA database, many of them having some parts of the face
not visible due to sideways illumination effects.

Table 3. Experiment results for Yale Recaptured Database.
Tan et al [2] approach v. Proposed Extension for Bad Illumination
Conditions.

Tan et al’s Approach [2]
Min Mean Max STD

Accuracy 71.0% 76.1% 81.2% 1.0%
True Positive Rate 92.0% 93.6% 95.1% 1.0%
False Positive Rate 32.8% 41.4% 50.0% 7.4%

Proposed Extension — Bad Illumination Conditions
4 tiles, Rayleigh Distribution, Contrast Limit = 0.1, α = 0.1.

Min Mean Max STD
Accuracy 89.0% 91.7% 93.8% 1.4%
True Positive Rate 83.3% 85.8% 87.7% 1.4%
False Positive Rate 0.00% 2.5% 5.4% 1.5%

With the original method (without dealing with illumination
changes), the classifier achieves a mean classification accuracy of
µ ∼= 76% with a high false positive rate (FPR ∼= 41%) which is
unacceptable for this type of application that should not deny access
for authorized users. When we cope with the bad illumination condi-
tion, the classifier yields a surprising mean classification accuracy of
µ ∼= 91.7% with FPR ∼= 2.5%. The proposed extension reduced
the classification error in more than 65%. We obtain such results
using the Rayleigh distribution which better preserves the original
aspects of the image across its bell-shaped histogram modeling.

We have observed that the Exponential distribution also provides
good results. However, sometimes it excessively brightens the orig-
inally well-lit regions of the image, causing the DoG filter to fail at
detecting the borders of theses regions.

In the Yale Recaptured Database, the α value that presented
the best results was 0.3. Given that the images of this database are
darker, a value too high of alpha leads to brighter images, distorting
their original aspects. We also have observed that higher contrast
limits often lead to better classification results. Since we are trying
to detect the high-frequency regions, a higher contrast of the image
helps the filter to detect them, especially on images that present re-
gions too dark.

The number of tiles dictates how the image is divided for the
adaptive equalization. Since many images in the Yale Recaptured
Database have approximately half of the face lit and half shadowed,
each distribution reacts differently to the number of tiles. However,
for all these cases, a few training examples are enough to learn suit-
able parameter values.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we dealt with the problem of spoofing detection in face
recognition systems using images under uncontrolled illumination
conditions. We also analyzed spoofing attempts using high quality
printed images (the problem tends to be simpler with low-quality

print attacks) as well as recaptured images from LCD screens. Al-
though, there are other possible forms of spoof (e.g., video-based),
here we dealt with recognition systems based on only one image.

The proposed extension method to detect spoofing attempts un-
der illumination changes achieves good classification results with
low false positive and false negative rates even with dark images.
The proposed extension reduced the classification error in more than
50% for high-quality printing spoofs (NUAA Imposter Database)
and more than 65% for the case of recaptured LCD images (Yale
Recaptured Database) when compared to the state-of-the-art coun-
terpart.

As a future work, we seek to improve the parameter search dur-
ing training. We also are interested in testing other face-based spoofs
such as the ones coming from cell-phone screens.

Finally, currently we are pursuing some approaches for dimen-
sionality reduction in order to take advantage of powerful classifica-
tion methods such as Support Vector Machines (SVMs).
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