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ABSTRACT

Up to now, an increase in camera resolution required image sensors

with more and more pixels. However, acquisition systems are lim-

ited in their pixels per second throughput given as power and com-

plexity constraints. Simply capturing more pixels in a given system

is often not possible. We propose a new non-regular imaging archi-

tecture that samples only few pixels and reconstructs a high resolu-

tion image afterwards. Our sampling is optimized to provide non-

regular spatial sampling from a sensor with regular readout circuits.

An existing slow image acquisition system can then be used to cap-

ture the data. The image reconstruction is performed with a local

sparsity-based approach. The result is a high resolution image that

requires a much smaller effort during acquisition.

Index Terms— Image Sensor, Digital Camera, Resolution En-

hancement, Sparsity

1. INTRODUCTION

If the resolution of an image sensor is not sufficient for a certain ap-

plication, one would usually replace the sensor (and lens) by higher

resolution models. Unfortunately, the increase in sensor resolution

directly increases the power consumption and cost of the system:

More pixels need to be read out of the sensor array in the same

amount of time, which requires more power. The A/D conversion

needs to speed up and further components like storage, compression

or image processing get much more complex.

As an alternative, the increase in resolution through image pro-

cessing has been studied extensively for regular sampling: General

interpolation algorithms (linear, bi-cubic, splines, ...) are widely

used. Super resolution image reconstruction is typically based on

displacement estimation, interpolation and deconvolution. Multiple

low-resolution images of the same scene are required [1]. Single-

image super resolution operates on a single low resolution image and

performs reconstruction by comparison with image patches from a

training set. A plausible creation of new high resolution image in-

formation can be achieved [2].

For non-regular sampling an increase in resolution can be gained

through compressed sensing theory: A real world image can be de-

scribed as a sparse signal in a transform domain and one can estimate

the best fitting basis functions that generate a good image from only

some of the samples. Image reconstruction for a regular sensor with

a large number of unused pixels is shown in [3]. Compared to a high

resolution sensor this does not save any readout time or power.

The paper is organized as follows: Sampling architectures are

shown in the next Section. Our proposed sampling and image recon-

struction are explained in Section 3 and 4. Simulation results and

images are shown in Section 5.

2. SPATIAL DOMAIN IMAGE SAMPLING

Various methods for image sampling are shown in Fig. 1. If we had

all the resources we want, the best option for high resolution images

would be a high resolution sensor as shown in Fig. 1 a). However, a

large number of rows and readout circuits requires a lot of time and

power for reading all the pixels. For comparison, the low resolution

sensor shown in Fig. 1 c) has only 1/4 of the pixels with half the rows

and half the readout circuits and is called ”unshielded”. A single

image readout is faster and requires less power but will only yield

low resolution images.

In practice, each pixel has only a certain area that is sensitive to

light [4], while the remainder is taken up with transistors and wiring.

An equivalent low resolution sensor with fill factor 25% is shown in

Fig. 1 d). We call this sampling ”1/4 regular”.

Alternative systems have been proposed to enable the recon-

struction of high resolution images from few samples. A regular

image sensor with many unused pixels [3] is shown in Fig. 1 b). A

random sampling is performed for subsequent reconstruction of high

resolution images. Unfortunately, the readout circuits of the pixel ar-

ray are not adapted to the randomness. The readout of good pixels

also requires the readout of all unused samples. In this case 75 % of

power or time would be wasted on reading unused samples and no

advantage in power or frame rate is gained. The line buffer approach

for random sampling in [5] is similar. All samples are available in

memory and only random pixels are used in further processing. If

we already have all the pixels, discarding and reconstruction can not

increase image resolution. The overhead of reading and discarding

pixels is only acceptable for a very low number of defect pixels. We

show the application of sparsity-based defect interpolation on Bayer

pattern raw data in [6].

3. PROPOSED SAMPLING

We propose an image sensor that performs non-regular spatial sam-

pling as shown in Fig. 1 e). The sensor has regular large pixels, but

the light sensitive area is placed differently for each pixel. The pixel

area is divided into 4 quadrants and only one of them is sensitive to

light. The result is a random sampling pattern on the high resolution

grid. The underlying image sensor architecture (buses and readout

circuitry) is still regular as with a regular low-resolution sensor.

A practical implementation can be created from off-the-shelf

low-resolution image sensors with high fill factor (e.g. with mi-

crolenses). Additional shielding from light is applied on top of it.

For each large pixel one of four possible masks needs to be applied

randomly. It is also possible to design sensors based on four different

pixel layouts where the light sensitive area is directly placed in one

of the quadrants. Unfortunately, the systems from Fig. 1 b), d) and

e) will have a fixed fill factor of only 25% and will have a reduced
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a) high resolution b) unused samples c) unshielded d) 1/4 regular e) 1/4 random

area sensitive to light area insensitive to lightunused pixelsmall pixel large pixel readout circuits

Fig. 1. Sampling patterns: a) high resolution sensor, b) high resolution sensor with 75% unused pixels [3] c) low resolution sensor, d) more

realistic pixels with fill factor 25%, some parts are not sensitive to light and e) proposed non-regular placement of area sensitive to light

sensitivity compared to Fig. 1 a) and c). For now, only independent

color channels as in 3-chip cameras are considered.

The resulting non-regular pattern is not truly random, as each

large pixel we will have exactly one quadrant that is sensitive to light.

For image reconstruction the next samples are always close. We

believe that this is beneficial as natural images are non-stationary

and a somewhat evenly distributed sampling is better for adjusting to

changes in statistical properties of the image. Due to our block based

reconstruction the pattern only needs to be uncorrelated in a nearby

neighborhood. This can facilitate manufacturing. An enhancement

in resolution of the whole system can only be gained if the optical

path is able to deliver the resolution. The optical anti-alias filters

need to match the high resolution sampling grid [4] and the lens

needs to be good enough for the pixel size.

4. SPARSITY-BASED IMAGE RECONSTRUCTION

The reconstruction is carried out on blocks of size M ×N pixels

on the high resolution grid. The area to be reconstructed is located

in the center and is of size MR×NR. An exemplary block with

M×N = 28×28 and MR×NR = 4×4 is shown in Fig. 3. The

regarded block is called processing area L and is depicted by spatial

coordinates m and n on the high resolution grid. Area L can be fur-

ther divided in subareas as shown in Fig. 3 a): area A (white) holds

all directly sampled pixels, area B (black) contains all unknown pix-

els and area C (gray) is used for previously reconstructed values.

During the model generation, the weighting function

w′[m,n] =







1 for (m,n) ∈ A
0 for (m,n) ∈ B
δ for (m,n) ∈ C

(1)

is used to weight each sample depending on its origin. The weight δ
is used for previously processed pixels with processing in line-scan

order as shown in Fig. 3 a). The influence of each sample depending

on its position is further refined to

w[m,n] = w′[m,n] · ρ̂
√

(m−
M−1

2
)2+(n−

N−1

2
)2 (2)

Thus, pixels far away from the center obtain a smaller weight and

consequently less influence on the model generation. The weight

of known samples decreases exponentially with increasing distance

and is controlled by decay factor ρ̂ as shown in Fig. 3 b).

For estimating the missing pixels, the complex-valued Fre-

quency Selective Extrapolation (cFSE) from [7] is used. This

algorithm iteratively generates the sparse model

g [m,n] =
∑

(k,l)∈K

c(k,l)ϕ(k,l) [m,n] (3)

a) subareas in L b) weight w[m,n] c) prob. p[k, l]

Fig. 3. Visualization of cFSE parameters: a) exemplary area L with

division in subareas A (white), B (black) and C (gray), b) area L
with weighting of pixels w[m,n] and c) basis function probability

p[k, l] with high frequencies in the center

of the signal as weighted superposition of the two-dimensional basis

functions ϕ(k,l) [m,n]. The weights of the individual basis functions

are controlled by the expansion coefficients c(k,l) and set K holds the

indices of all basis functions used for model generation. As proposed

in [7] we use the functions of the two-dimensional discrete Fourier

transform as basis functions. These functions enable cFSE to re-

cover different image content like smooth as well as noise like areas

and edges at high quality. Furthermore, the reconstruction can be

carried out efficiently in the Fourier domain using a 2D-FFT of size

T×T . For generating the model, cFSE selects one basis function

to be added to the model and estimates the corresponding weight in

every iteration.

Unlike [7], the selection can be ambiguous due to the small num-

ber of available samples. To favor a smooth solution, we assign a lin-

ear decreasing probability p[k, l] to basis functions with increasing

frequency:

p[k, l] =
1

p0

(

1−
√
2

T

√

k̃2 + l̃2
)

(4)

with k̃ = T

2
− |k − T

2
| and l̃ = T

2
− |l − T

2
| and p0 is used for

normalizing the sum over p[k, l] to one. This replicates typical point

spread functions from optical domain acquisition: The higher the

frequency, the more of the signal will be attenuated [4]. An exem-

plary probability p[k, l] is shown in Fig. 3 c) with the top left corner

corresponding to DC index [k, l] = [0, 0].

The sparse model g [m,n] is defined over the whole area L. The

center area of the generated model is finally used as the reconstructed

signal. Due to this block based approach, the image reconstruction

scales linearly with the total number of pixels and directly allows

for excellent parallelization. For an extensive discussion and source

code of cFSE, please refer to [7].
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a) unshielded b) unshielded linear c) 1/4 reg. sampling d) 1/4 reg. linear e) 1/4 reg. spline

f) ideal sampling g) 1/4 rand. sampling h) 1/4 rand. linear i) 1/4 rand. proposed j) original

Fig. 2. Sampling for Zone Plate test pattern, full image (top) and cropped region (bottom): a) and c) show aliased sampling, b), d) and e)

show linear, linear and spline based interpolation of a) and c), significant aliasing is visible, f) shows ideal sampling and interpolation, g)

proposed 1/4 random sampling, h) linear Delaunay interpolation of random sampling, i) proposed cFSE reconstruction of g) and j) original.

(Please pay attention, additional aliasing may be caused by printing or scaling! Best to be viewed enlarged on a monitor!)

5. SIMULATION RESULTS

Our simulation compares the proposed non-regular sampling to reg-

ular low resolution sampling. Compared to the original image, the

sampling for all methods uses 1/4 of the samples according to Fig. 1

c) to e). Furthermore, ideal sampling with optimum low-pass filter-

ing is considered. For comparison, image reconstruction for aliased

sampling is carried out with linear and spline interpolation. The lin-

ear interpolation for non-regular sampling is based on Delaunay tri-

angulation [8]. All operations are carried out in independent color

channels (similar to a perfectly aligned 3-chip camera).

In our simulation we used the following parameters for cFSE:

the area to be reconstructed is of size MR×NR = 4×4 with blocks

of size M×N = 28×28, weight for previously processed samples

δ = 0.75, weight decay factor ρ̂ = 0.7, orthogonality correction

γ = 0.25, maximum number of iterations νmax = 500 and basis

functions emanate from an FFT of size T = 32. For an extensive

discussion of the parameters, please refer to [7].

Table 1 shows a PSNR comparison to the original high resolu-

tion image. For regular images like Lighthouse (Kodim19) and the

Zone Plate we can get large gains compared to traditional sampling.

For mostly random content like the hair of the woman in Kodim04

the reconstruction is difficult. In noise-like image regions a low-pass

solution would be favored in terms of PSNR. As shown in [9] PSNR

can only be used as a hint for evaluating visual quality. Still, the

images reconstructed with our method are competitive.

Sampling unshielded 1/4 regular ideal 1/4 random

Reconstruction - linear linear spline ideal linear proposed

Kodim04 31.0 31.7 31.0 30.4 33.2 31.3 32.4 dB

Kodim08 22.4 22.6 22.3 21.7 23.9 21.8 24.2 dB

Kodim19 27.0 27.0 27.1 26.7 28.6 26.2 30.0 dB

Zone Plate 11.1 10.7 10.4 9.3 11.2 9.5 38.9 dB

Table 1. PSNR results for different samplings and reconstruction

The Zone Plate test pattern with different sampling patterns is

shown in Fig. 2. This 2D chirp signal contains all frequencies. Di-

rectly sampling the high resolution with few regular samples leads

to aliasing as shown in Fig. 2 a) and c). Neither linear nor spline

based interpolation can remove this any more as shown in Fig. 2 b),

d) and e). Ideal sampling and interpolation in Fig. 2 f) does not pro-

duce aliasing but loses all high frequencies. The proposed random

sampling is shown Fig. 2 g). The non-regular linear interpolation is

not able to recover high frequencies as shown in Fig. 2 h). Our pro-

posed cFSE reconstruction in i) is able to fully reconstruct all image

detail and all frequencies of the original image can be recovered.

Compared to the original in Fig. 2 j) no difference is visible.

For natural images the improved reconstruction quality is shown

in Fig. 4. Independently from image characteristics we can generate

a high visual quality compared to the results from traditional sam-

pling. For structured images like Lighthouse (Kodim19) a very good

reconstruction of details is possible. Even in random textures like in

Kodim04 a visually appealing reconstruction can be obtained.
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a) unshielded b) unshielded linear c) 1/4 reg. sampling d) 1/4 reg. linear e) 1/4 reg. spline

f) ideal sampling g) 1/4 rand. sampling h) 1/4 rand. linear i) 1/4 rand. proposed j) original

Fig. 4. Cropped examples from Kodak image set, Kodim04 (top), Kodim08 (middle) and Kodim19 (bottom), see Fig. 2 and text. Good

reconstruction in structured areas and plausible image content in random textures for proposed method in i)

6. CONCLUSION

We presented a novel approach to non-regular sampling and image

reconstruction. We shield parts of each pixel of a regular low reso-

lution image sensor. This gives a non-regular sampling pattern that

can be read out of the sensor with low effort. We then reconstruct

high resolution image details based on the sparsity assumption with

an iterative block based algorithm in the Fourier domain. Our re-

sults show that this works excellent for structured image regions and

still generates plausible images for random textures. The result is

an increase in resolution by shielding parts of the pixels of a low

resolution sensor. A high resolution camera does not require high

resolution sensors any more. During acquisition we can now save

power, complexity and cost. Additional processing is required for

high resolution image reconstruction.
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“Sparsity-based defect pixel compensation for arbitrary camera

raw images,” in accepted for IEEE International Conference

on Acoustics, Speech, and Signal Processing (ICASSP), Prague,

Czech Repubic, May 2011.

[7] J. Seiler and A. Kaup, “Complex-valued frequency selective ex-

trapolation for fast image and video signal extrapolation,” IEEE

Signal Processing Letters, vol. 17, no. 11, pp. 949 –952, Nov.

2010.

[8] B. Delaunay, “Sur la sphère vide [On the empty area],” Izvestia

Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestven-

nykh Nauk, vol. 7, pp. 793–800, 1934.

[9] Z. Wang and A.C. Bovik, “Mean squared error: Love it or leave

it? a new look at signal fidelity measures,” IEEE Signal Pro-

cessing Magazine, vol. 26, no. 1, pp. 98 –117, 2009.

2011 18th IEEE International Conference on Image Processing

1940


