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ABSTRACT

In medical image analysis, atlas-based segmentation has be-

come a popular approach. Given a target image, how to select

the atlases with the similar shape of anatomical structure to

the input image is one of the most critical factors affecting

the segmentation accuracy. In this paper, we propose a novel

strategy by putting the images on a manifold to analyze the

intrinsic similarity between the images. A subset of atlases

can be selected and the optimal fusion weights are computed

in a low-dimensional manifold space. Finally, it combines

the selected atlases by using the corresponding weights for

image segmentation. The experimental results demonstrated

that our proposed method is robust and accurate especially

when a large number of training samples are available.

Index Terms— image segmentation, atlas-based, mani-

fold learning, fusion.

1. INTRODUCTION

In medical image analysis, automatic or semi-automatic seg-

mentation of anatomical structures is a fundamental task.

Pham et al. [1] classified the common approaches into eight

categories. Among the reported methods, both deformable

models [2] and atlas-based approaches use the information of

the boundary of anatomical structures. Atlas-based segmen-

tation methods, for its high accuracy, have been extensively

applied for segmenting MR brain images [3] and prostate

images [4].

In the classical methods of atlas-based segmentation, the

first step is registration that each atlas image is aligned with

the query image. The closest atlas is then selected for the

segmentation of a particular image. It was shown that atlas

selection strategies were the key factors directly affecting the

final segmentation accuracy [5]. In the previous reports, there

were different atlas selection strategies. For example, Wu et

al. [6] selected a ‘best’ similar atlas by measuring the Nor-

malized Mutual Information (NMI) of images. In a similar

work [4], it was based on a multi-atlas selection method and

fused the selected atlases for segmentation. These methods

were seen as directly using Euclidean distance to analyze the

Fig. 1. The left is a MR image of prostate. The right is a

binary labeled image segmented by the expert. An atlas is

defined as a pair of these two images.

similarity in global image space. However, in the global im-

age space, the measure by geodesic distance can better reflect

the intrinsic similarity than direct Euclidean distance.

Fig. 1 shows an atlas with corresponding segmentation.

It can be imagined that if the shape of anatomical structure

of query image is highly similar to the image on the left, the

query image can be segmented by the binary labeled image

on the right. So selecting the similar images is very impor-

tant for the work of atlas-based image segmentation. Directly

analyzing the similarity of images in image space is difficult

and inaccurate because of the interference of redundant in-

formation. In this paper, we propose a novel atlas selection

strategy based on manifold learning, which projects the im-

age space into a low-dimensional space. The similarity of

images reflected by geodesic distance in image space can be

approximately estimated by the simple Euclidean distance in

the low-dimensional space, for that the projection preserves

the local neighborhood of images. Our main contributions

in this paper are included as follows: 1) By putting the im-

ages on a manifold, the intrinsic similarity of images can be

reflected in a low-dimensional space; 2) We propose a novel

algorithm for computing the optimal fusion weights of the

selected atlases by solving a cost function of minimal recon-

struction error. We compare our method with the state-of-

the-art methods [4, 6] based on the performance. The results

show that our method is robust and promising.

The rest of this paper is organized as follows: In section

2, we give a detailed description of our method. Our data sets
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Fig. 2. An overview of our proposed method. Note that the

destination image for segmentation is marked by the red box.

and some experimental results are discussed in section 3. And

some conclusions about this paper are provided in section 4.

2. METHOD

In this section, we give a briefly overview of our proposed

method. The workflow is shown in Fig. 2. We define an

atlas to be an original MR image A(x) and its corresponding

binary labeled image L(x), which is segmented by an expert

(where x represents a pixel location in an image).

Given a query image P (x), the problem is how to select

atlases with the similar shape of anatomical structure to the

query image. In practice, the atlas can not be directly used

to segmentation for the large variations of shapes. Generally,

each atlas image is firstly aligned to the query image, which

makes the shape of atlas closing to the query image. Then

a critical step is the similar images selection. In our method

we apply manifold learning to address this problem, because

of the projection preserving local neighborhood of images in

manifold learning. Finally, the selected atlases are fused to

a single image for segmentation. The detailed our method is

described in following sections.

2.1. Registration

The registration stage includes a rigid registration step and a

non-rigid registration step. Firstly, each atlas image Ai(x)
(i = 1, 2, ..., N) is matched to the query image P (x) by a

translation and rotation transform. After that a B-Spline de-

formable registration is performed. By the registration, each

atlas image corresponds to a parameter of transformation Ti.

Applying Ti to Ai(x) and Li(x) yields the new sets of de-

formed atlas Âi(x) and L̂i(x). The transformation is de-

scribed as follows:

Âi(x) = Ai(x) ◦ Ti, (1)

L̂i(x) = Li(x) ◦ Ti, (2)

where the notation “◦” represents a remapping process.

2.2. Atlas selection on manifold

For the interference of redundant information, directly an-

alyzing the similarity of images in image space is difficult

and unreliable. We address the problem of atlas selection in

a low-dimension space by the manifold learning. The adja-

cency graph of atlases in image space can project into a low-

dimensional space by preserving the local neighborhood. In

this work, all atlases have the same size of m pixels. Each at-

las Âi(x) is represented by a vector hi in the m-dimensional

space Rm. And the atlas can be considered as a point dis-

tributing in the m-dimensional manifold space. Then each

vector hi is linearly mapped to a vector li in the n-dimensional

space Rn (n≪m). It yields a transformation matrix W in

the procession of projection. The query image P (x) is repre-

sented by a vector h0 mapping into the same low-dimensional

space as follows:

l0 = WT × h0, (3)

where l0 is a low-dimensional vector that represents the query

image.

In light of the projection preserving the local neighbor-

hood, the similarity of images in the low-dimensional space

can be estimated by the simple Euclidean distance instead of

geodesic distance. The distance of each atlas to the query im-

age is computed as follows:

Di = ‖l0 − li‖2. (4)

According to the Euclidean distance Di, k-Nearest Neighbor

(kNN) Âk(x) are selected.

2.3. The weights of fusion

With the subset Âk(x) selected from the set Âi(x), a cor-

responding subset of labeled images L̂k(x) can be selected.

The destination image Ldst(x) for segmentation can be con-

sidered as a linear combination of the images L̂k(x). In the

low-dimensional space Rn, labeled images are represented by

the vectors lk and the destination image Ldst(x) is l0. The op-

timal linear combination can be solved by a cost function of

minimal reconstruction error ε [7]:

arg min
ω1,...,ωK

ε = ‖l0 −

K∑

k=1

ωklk‖
2

2
, (5)

with a constraints
∑

ωk = 1. Where ω=(ω1, ..., ωK) is the

vector of reconstruction weights that the value reflects the
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Fig. 3. The upper part of the graph shows the distribution of

the atlases (blue points) and the query image (red point) in

2-dimentional space, and the query image is shown in the red

box. The lower part of the figure visualizes ten of nearest at-

lases selected based our method in the blue box. Ten atlases in

the green box are selected based on maximum NMI, and their

positions in our 2D manifold are described by green circles in

the upper part.

contribution of each image L̂k(x) to the destination image

Ldst(x). Apparently, to minimize the reconstruction error is

equal to address a constrained least squares problem. So we

introduce a Gram matrix G:

G = (l01
T − L)T (l01

T − L), (6)

where 1 is a vector of ones with the same size of l0, L consists

of the K vectors of the labeled images. Then the problem can

be solved by the following solution:

ω =
G−11

1TG−11
. (7)

Finally, we use the simple robust Majority Voting fusion

method [5] to fuse the labeled images L̂k(x) into a single des-

tination image Ldst(x) for segmentation. The Majority Vot-

ing method is defined as follows:

Ldst(x) =

K∑

k=1

ωkL̂k(x), (8)

where ω=(ω1, ..., ωK) is the vector of fusion weights, it is

defined in equation (5).

3. EXPERIMENTS

3.1. Data and evaluation criterion

The performance of our method is evaluated on 40 MR im-

ages of the prostate, which were taken from 40 different pa-

tients. The size of each image is 512×512 pixels and with

a binary image for the ground truth segmented by the ex-

pert. For the relatively limited data, a leave-one-out cross-

validation approach is applied. The final segmentation over-

lap is measured by the Dice Similarity Coefficient (DSC), as

given below:

DSC(A,B) =
2|A

⋂
B|

|A|+ |B|
, (9)

where A is a binary label image as the ground truth, B is the

automatically segmented binary image. | · | denotes the num-

ber of pixels in a object region. The value varies between 0

and 1, and the higher value indicates the better segmentation.

3.2. Manifold learning by LPP

There were many classical algorithms of manifold learning,

such as the linear projection of Principal Component Analy-

sis (PCA) and the nonlinear ISOMAP [8] and LLE [9] algo-

rithms. In our experiment, we apply the Locality Preserving

Projections (LPP) [10] algorithm. LPP has both the advan-

tage of linear and nonlinear techniques. It can linearly project

high-dimensional data into a low-dimensional space and pre-

serve local neighborhood information.

In this work, we extracted the region of interest in the at-

las with the size of 256×256 pixels around the image center.

That is to say, hi represents a point in the 65536-dimensional

space. Before the projection, all images are preprocessed by

histogram equalization to reduce the impact of light. In Fig.

3, the upper part of figure shows the distribution of atlases in

the 2D manifold space. The red point represents the query

image, and the blue points represent the atlases image. And

the region of interest of the query image is showed in the red

box. The lower part of the figure respectively visualizes ten

nearest atlases selected based on our method, and shown in

the blue box. In the green box, it shows ten images selected

based on the method [5]. And the position of these images is

described by green circles in the upper part. It can be seen, the

shape of images in blue box is more similar to in red box than

in green box. And in the 2D manifold space, the positions of

these images in blue box are nearer to in red box than in green

box. That is to say, putting the images on the low-dimensional

manifold is helpful for find the similar images. Considering

affection of the dimension number about the low-dimensional

manifold to the accuracy of segmentation, we test the dimen-

sions from 1 to 39 and find that 38 is the most proper in our

experiments.

3.3. Results

We compared our method with two other state-of-the-art

methods proposed by Wu et al. [6] and Klein et al. [4],

respectively. The methods were carried out using the same

registration. For Wu’s method, a ‘best’ single atlas was se-

lected based on the maximum NMI. In the work of Klein et
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Fig. 4. The average of DSC of three methods.

al. [4], k atlases were selected to fuse for segmentation. In

our work, the cross validation leave-one-out approach was

employed. One of the 40 images was used as the query image

and the rest are used as atlases at each time. The average

DSC of 40 experiments is shown in Fig. 4. We selected

the nearest single neighbor comparing with Wu’s method

[6]. The average of DSC based on our method is about 0.88,

while it’s about 0.86 in Wu’s method. When the selection

number of atlas is more than one, we compare our method

with Klein’s. When the selection number ranges from 1 to

39, the DSC values of our method are higher than the Klein’s

in most cases as shown in Fig. 4. Especially, the problem

of over-fitting apparently occurs in Klein’s method when the

samples exceed a limitation. It can be concluded that our

method is superior to Klein’s method in the case of relative

large sample and is not inferior in the case of small sample.

In Fig. 5, it shows several segmentation results. The qual-

itative results of Klein’s are in top row and our method’s are

in bottom row. The red contours represent the ground truth.

And the yellow contours are automatically delineated by the

two methods.

4. CONCLUSION

In this paper, we proposed a novel strategy of atlas selection

by putting images on a manifold for analyzing, which reveals

the similarity of shape features of atlases in a low-dimensional

manifold space. By comparing with two other state-of-the-

art methods [4, 6], the experimental results indicate our algo-

rithm is robust and promising. In the future work, we will test

our algorithm on other datasets and further extend our work

to 3D atlas-based segmentation.
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