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ABSTRACT 

 

Different techniques exist for camera calibration based on 

photogrammetry or self-calibration. Much work has been 

done to obtain intrinsic and extrinsic camera parameters and 

also in data pre- and post-processing techniques. From a 

practical viewpoint, it is quite difficult to decide which 

calibration method produces the best results and even 

whether any data processing is necessary.  

This paper proposes a set of optimal performance 

conditions to resolve the calibration process accurately. The 

calibration method based on a 2D pattern has been chosen 

since camera is calibrated using several images of a planar 

template easily. The proposed optimal conditions define the 

number of points to design the calibration pattern, the 

number of images to resolve the calibration accurately, as 

well as positions and orientations from where images should 

be taken. The recommend rules will help to obtain a well-

conditioned calibration process. 

 

Index Terms— Camera calibration, 2D pattern, non-

linear calibration, optimal conditions 

 

1. INTRODUCTION 

 

In the calibration process, it is essential to consider the 

quality of results, which obviously depends on data 

accuracy. Some studies have been made on calibration errors 

committed due to imprecise measurement of the image plane 

or calibration template [1, 2, 3, 4]. The calibration process is 

also affected by erroneous association of one point in reality 

with a point in the image. Some authors use statistical tools 

to detect these anomalies [5]. Computing errors due to 

instabilities of the mathematical tool should also be taken 

into account [6]. In these cases, data normalization improves 

the robustness of the algorithm and gives more accurate 

results [7]. Another significant case is the computed camera 

model. A very complex model can complicate the algorithm 

and the result obtained will not be much better than that 

obtained with a simpler model. A very complicated model 

may produce instabilities in the process of questing and 

produce absurdities [8]. 

The state of the art of calibration provides some guide 

about efficiency of camera calibration in all situations. The 

Tsai method [9] represents a classical calibration process 

based on the measurements of the 3D points in the template 

taking a fixed reference. This method has been widely used 

in the past. Salvi [10] compares the calibration methods 

developed between 1982 and 1998, with the Tsai method 

showing better performance, despite the fact that it requires 

high precision in input data. On the other hand, Zhang’s 

method [3], which is not included in Salvi’s comparison 

[10], represents a new era in the camera calibration process. 

This method uses images of a 2D template taken from 

different camera positions and orientations. In this way, the 

advantages of camera self-calibration are combined with the 

point coordinate-based calibration. This calibration method 

is highly flexible, since the camera and the template can be 

moved freely and also as many images as are required can be 

taken without measuring any position of the template. Sun 

[11] compares the Tsai method with Zhang’s method. On 

one hand, Tsai produces a precise estimation of camera 

parameters if the input data have not been corrupted. Since 

100 points in the template are necessary and the coordinates 

should be referred to a fixed origin, careful design of the 

calibration template and a very accurate coordinate 

measurement are necessary. Nevertheless, errors are too 

easily committed and in practice these results are not as 

accurate as expected, as shown by Sun [11]. On the other 

hand, Zhang’s method based on a 2D template requires 

neither a special design nor precise point measurement. Sun 

obtains camera calibration with a hand-made template, and 

better results are computed using Zhang’s method. 

Furthermore, the sensibility of the calibration algorithm to 

errors in the measures can be improved by increasing the 

spotted number in the template, by simply printing a 

chessboard with more corners. The results of the comparison 

show the flexibility and adaptability of Zhang’s method, as it 

can be performed on any scene. Considering the results of 

these two authors, Zhang’s method is used as a reference for 

camera calibration. 

This paper proposes the optimum conditions from the 

viewpoint of number of points, number of images and 

location of the camera for taking the images, to improve on 

Zhang’s camera calibration method. These definitions obtain 
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a well-conditioned calibration process which compute better 

results. The paper is structured as follows: Section 2 defines 

optimal conditions for camera calibration from the 

viewpoint of number of points, number of images and 

location of the camera taking the images. In section 3 

experimental results are presented. Paper ends with some 

conclusions. 

 

2. OPTIMAL CONDITIONS FOR CAMERA 

CALIBRATION 

 

To calibrate the linear camera model, Zhang [3] describes a 

method based on the homographies between a planar 

calibration pattern and its images from several camera 

positions. For each homography two homogeneous 

equations arise as: 
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h represents elements of the homography H and b=[b11, b12, 

b22, b13, b23, b33], where bij represents the element ij of the 

symmetric matrix K
-T

·K
-1

. K contains intrinsic parameters of 

pin-hole model. If m images of the calibration object are 

observed, m equations such as (1) arise, giving V·b=0, where 

V is a 2mx6 matrix. At least three images are necessary m≥3 

in order to obtain a unique solution. The closed-form 

solution is given by the eigenvector of V
T
V associated with 

the smallest eigenvalue. Once b is estimated, camera internal 

parameters can be computed. When K is known, external 

parameters for each image can be computed when the 

corresponding homography is known. See [3] for details. 

 

2.1. Camera calibration scene 

 

To define the optimal positions for image capture, a 

calibration scene is defined. (o,{xw,yw,zw}) is 3D scene 

coordinate system and (o’,{xc,yc,zc}) is camera coordinate 

system located as shown in figure 1. The centre of the 

template is situated in the origin of coordinates of the scene 

and the camera is always translated with a negative z-

coordinate. The orientation of the camera is defined using 

the position. This means that the camera optical axis crosses 

the centre of the template always as shown on figure 1. 

Moreover, Xc axis of the camera coordinate system is always 

parallel to plane Xw-Yw of the scene. From a practical point 

of view, the template is located on the floor of the 

calibration scene and the camera is located on a tripod, 

which keeps the upper border of the image parallel to the 

floor. The origin of the scene coordinate system is the 

template centre. 

  

 
Figure 1. Scene and camera coordinate systems. Orientation is 

computed starting with camera location. Optical axis goes through 

origin of coordinates in the scene. 

 

 

To relate orientation with position of the camera, two 

rotations are defined. First camera and scene coordinate 

systems coincide. Then, the camera is rotated at angle β with 

respect to the Zc axis as shown in figure 1. Second, in 

relation to the Xc axis, the camera is rotated an angle α as 

shown on figure 1. These two rotations keep the Xc axis 

parallel to plane X-Y of the calibration scene. These angles 

are a function of the camera position: 
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where m1 represents the module of camera translation in 

plane Xw-Yw, symbolizing the floor, and m2 is the distance of 

the camera to the origin of coordinates in the scene. The 

origin of coordinates of the image is in the centre and will 

therefore be pixels with negative coordinates. Another 

supposition refers to the scale factor ku and kv in image axes. 

It is assumed that pixels are squared and therefore the scale 

factor is the same in both axes and we rename with k. 

 

2.2. Condition of camera calibration 

 

As known in a general framework, a matrix M has r eigen 

vectors and r eigen values, where r is the rank of matrix M. 

Eigen vectors are orthogonal to one another. Eigen vectors 

modules represent the number of vectors in the matrix M 

oriented in the direction defined by each eigen vector. The 

module of one eigen vector increases if there are more 

vectors in matrix M oriented in this eigen vector direction. 

The ratio between the bigger module and the smaller module 

is called the condition number of the matrix. To obtain a 

well-conditioned system, the condition number should be 
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one. This means there are vectors in M which cover all R-

dimensional space. Therefore, if a parameter vector is 

estimated with this matrix M, information from the data 

affects all dimensions of the parameter vector. In the event 

of a badly conditioned matrix, some parameters are not 

influenced by the information contained in matrix M and 

therefore such estimation will be erroneous.  

If this theory is particularized to linear camera 

calibration, the camera parameters are in the eigen vector 

associated with the smaller eigen value of matrix V defined 

by expression (1). Matrix V is formed from the elements of 

homographies 
l
H. Since the condition number of matrix V 

should be one, all vectors of matrix V should have the same 

module, and they should be orthogonal to one another. 

Vectors of V depend on the homographies 
l
H, whereas 

l
H 

depends on the locations from which images are taken. 

Therefore, vectors of V depend indirectly on positions in 

which the camera is located. Consequently, we can say that 

positions from which images are taken, influence the 

condition of matrix V. As a result, to obtain a well-

conditioned matrix V several locations for the camera should 

be defined. 

Dimension of V is 2mx6. Therefore the minimum 

number m of homographies to resolve the system is m≥3. 

Within this framework, a well-conditioned matrix V will 

arise with vectors 
l
vij, which are orthogonal to one another, 

with equal modules. Sub index ij represents vector v formed 

from the columns i-th and j-th of homography l. Thus, 

homographies forming a set of vectors 
l
vij orthogonal to one 

another and with identical modules are required. In 

consequence care must be taken when dealing with 

homography elements. 

To obtain a well-conditioned matrix V, the following 

expressions must be true for all i, j, l. 

( ) 0· 122211 =− vvv lTlTl
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The first expression represents an orthogonal condition 

and the second stands for module equality. i, j, have values 1 

and 2 since they correspond with the two left-hand columns 

of the homography l. The number of homographies l should 

be at least 3. If 3 homographies are established whose 

vectors are orthogonal and with equal modules, a well-

conditioned matrix V will be obtained with only a minimum 

amount of information. 

 

2.3. Locations for image capturing 

 

Analysing expressions (4) and (5) they are satisfied when a 

camera is located with null coordinates 
l
tx or 

l
ty. If  

l
tx is zero, 

lty and ltz will not be zero. Also, if  lty is zero, ltx and ltz will 

not be zero. 
l
tx or 

l
ty are set different to zero moving the 

camera along the X or Y scene axis. The camera position in 

the Z axis of the scene 
l
tz is computed with the following 

expressions depending on whether the camera has been 

located with coordinate 
l
tx or 

l
ty different to zero: 
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From a practical point of view, the camera is moved 

along one of the axes representing the X or Y axis of the 

coordinate system of the scene and then the altitude of the 

camera in the Z axis is defined using the expression (6). 

After this, the camera must be oriented bearing in mind that 

the optical axis passes through the origin of coordinates in 

the scene. The camera must be moved along the X or Y axis 

exactly the same distance. It is important to note that 

expressions (6) do not depend on intrinsic parameters. This 

means that such camera locations do not depend on camera 

features and can be used with any camera. 

 

3. EXPERIMENTAL RESULTS 

 

To test the performance of the camera calibration conditions 

a simulated camera is similar to Zhang in [3] with 

parameters ku=1250, kv=900, u0=250, v0=250 and θ=1.09083 

equivalent to 89.95º is used. Image resolution is 512x512 

pixels. The calibration template is a chessboard of 

10x14=140 corners. Template size is 180x250 mm. In this 

case, it is situated on the floor and all corners have 

coordinates zw=0.  The camera is oriented so as to view the 

origin of coordinates in the centre of the image. Also, 

camera orientation is computed to ensure the x-coordinate 

axis of the image is parallel to the template plane. This 

simulates the effect of taking an image of a template situated 

on the floor using a tripod. 

To calibrate the camera under optimal conditions, the 

simulated camera is located at t1=(200, 0, 401.8), t2=(-100, 

0, 200.9) and t3=(0, 300, 602.1). Also, camera is calibrated 

using images from random positions t1=(150, 200, 580), 

t2=(-50, 250, 880) and t3=(100, -20, 820). Both calibration 

results changing the number of points in the template are 

compared. Results are shown in figure 2 for intrinsic camera 

parameters ku, u0 only. Similar performance has been 

computed for the remaining camera parameters. Camera 

calibration is solved using the linear and the non-linear 

process. In all cases, computed camera parameters are 

improved if optimal conditions are used. 

The number of points necessary for the calibration 

process can be defined analysing experimental results. If 

images are taken taking into account optimal conditions, 

more than 70 does not reduce parameters errors 

significantly. Obviously, since constructing a calibration 

template is an easy task, more than 70 points can be used to 

improve the results. 
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Figure 2. Comparison of intrinsic camera parameters calibration 

errors under optimal and non- optimal calibration process 

conditions changing the number of points 

 

4. CONCLUSIONS 

 

Optimal conditions for camera calibration using a 2D pattern 

have been defined. Camera parameters are computed the 

eigen vector associated with the smaller eigen value of the 

matrix composed with elements of several homographies. 

The calibration process will therefore be more stable if the 

condition number of this matrix is close to 1. To obtain this 

condition number closer to 1, elements of the homographies 

should be taken into account. Therefore, images of the 

template should be captured from specific locations to 

obtain a well-conditioned calibration process. To define the 

optimal locations from where to take images of the template, 

the condition number of this matrix has been analysed. The 

camera is located taking into account that the altitude should 

be twice its separation from the origin of coordinates in the 

scene. Also, the camera should be located along the X or Y 

axes of the scene coordinate system. The camera orientation 

is defined assuming that the optical axis goes through the 

calibration template. Finally, coordinates in the image and 

the template should be referred to the centre of the image 

and the template, respectively. 

Although Zhang's method was intended for self-

calibration in which images are taken from anywhere, here 

we propose a useful guide to improve the calibration results. 
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