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ABSTRACT

An image/video communication scenario with super-resolution (SR)
decoding, where the decoded images are upsampled using SR recon-
struction at the receiver side, is analyzed from a theoretical perspec-
tive. To formulate the rate-distortion performance for such cases, we
propose a new numerical model that combines a frequency-domain
SR model and a rate-distortion theory for lossy image compression.
We considered several factors that affect the reconstruction quality,
and revealed that SR decoding performs better in low bitrates. We
also conducted real-image simulations and confirmed that both the
numerical analysis and real-image simulations exhibit quite similar
tendencies, which supports the effectiveness of our numerical model.

Index Terms— image coding, super resolution, rate-distortion
theory, image reconstruction

1. INTRODUCTION

Super resolution (SR) reconstruction refers to the process of recon-
structing a high-resolution (HR) image from multiple low-resolution
(LR) images containing the same scene object [1]. Several re-
searchers successfully combined SR technology with video coding
schemes to enhance the resolution at the receiver side [2, 3, 4],
because the same scene objects are observed multiple times in suc-
cessive frames. This condition also applies to multiview images
used for 3-D image communication. However, to our knowledge,
not much attention has been paid on theoretical formulations of the
rate-distortion performance with SR reconstruction. Such formula-
tions are important to see the theoretical limitations and trade-offs
in introducing SR technology to communication systems.

This paper presents a rate-distortion analysis of super-resolution
(SR) decoding, where decoded images are upsampled using SR re-
construction at the receiver side. We first formulate a new numerical
model that combines a frequency-domain SR model which is equiv-
alent to [5], and a rate-distortion theory for lossy image compression
which was presented in [6]. Our numerical analysis suggests that
SR decoding has its advantage in low bitrates, which agrees with the
literatures [3, 4]. We also present real-image simulations to confirm
that both the numerical analysis and real-image simulations exhibit
quite similar tendencies in rate-distortion performance.

The problem statement is given as follows. Assume that mul-
tiple observations of the same scene object, which can be video or
multi-view images, are captured, then compressed and transferred to
the receiver. Figure 1 illustrates two coding scenarios for this pur-
pose. The first scenario is referred to as high-resolution (HR) coding,
in which the images are sampled, compressed, and decompressed in
a high resolution. The second scenario is named as low-resolution
(LR) coding with super-resolution (SR) decoding, in which sam-
pling, compression, and decompression are conducted in a lower
resolution, but the images are upsampled using SR reconstruction
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Fig. 1. Two coding scenarios compared in this paper.

at the receiver side. The question we address in this paper is which
scenario is better in terms of rate-distortion performance.

To simplify the problem, let the resolution of the HR images be
the twice of the LR images both in horizontal and vertical directions,
and assume that each image is compressed independently without
using inter-frame prediction. We also assume that the displacements
between the LR images are modeled as global translations, and they
can be registered without errors for SR reconstruction. Based on
these assumptions, we compare rate-distortion performance of the
two scenarios by numerical model analysis in Section 2 and real-
image simulations in Section 3.

2. NUMERICAL MODEL ANALYSIS

In Sections 2.1–2.3, we formulate the processes of image formation,
lossy image compression, and super-resolution reconstruction, in se-
quence. Section 2.4 describes the results of numerical analysis based
on the theoretical model.

2.1. Image Formation Model

Let (u, v) be the coordinate system of the 2-D image signal. Assume
an image formation model:

y(u, v) = {p(u, v) ∗ x(u, v)} δ∆(u, v) + nob(u, v) (1)

δ∆(u, v) =
X

m,n∈Z

δ(u − m∆ − ζ, v − n∆ − η) (2)

where x(u, v) is the underlying continuous signal, and y(u, v) is
a digital image generated from x(u, v). p(u, v) is a point spread-
ing function (PSF), and ∗ denotes convolution. δ∆(u, v) represents
the sampling grid, where δ(u, v) is the Dirac’s delta function, and
∆ denotes the length of pixels. (ζ, η) represents the sampling off-
set, and without loss of generality, ζ, η ∈ [−∆/2, ∆/2] can be as-
sumed. nob(u, v) is the observation noise. The Fourier transforms
of Eqs. (1) and (2) can be described as

ŷ(û, v̂) = {p̂(û, v̂)x̂(û, v̂)} ∗ δ̂∆(û, v̂) + n̂ob(û, v̂) (3)

δ̂∆(û, v̂) =
4π2

∆2

X

m,n∈Z

δ

„

û − 2mπ

∆
, v̂ − 2nπ

∆

«

e−j(ûζ+v̂η) (4)
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ŷH(û , v̂−π)
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Fig. 2. Details of Eq. (16)

where ˆ is used to denote the frequency-domain representation of
the corresponding symbol. Equation (3) means that the spectrum of
p̂(û, v̂)x̂(û, v̂) is replicated in constant intervals with phase shifts,
exp(−j(ûζ + v̂η)), which depend on the sampling offset (ζ, η).

Let the pixel size of the HR images be 1×1, and assume that
the underlying signal x̂(û, v̂) is bandlimited within [−π, π]: i.e. the
Nyquist condition is satisfied for this resolution. Thus, the spectrum
of a HR image for û, v̂ ∈ [−π, π] is described as

ŷH(û, v̂) = 4π2p̂H(û, v̂)x̂(û, v̂) + n̂ob(û, v̂) (5)

where pH is the PSF of the HR image. Meanwhile, the spectrum of a
LR image, whose pixel size is 2×2, is periodic with cycles of (π, π)
and can be described in the range û, v̂ ∈ [0, π] as

ŷL(û, v̂) =
X

m,n∈{0,1}

ŷ′
H(û−mπ, v̂−nπ)

4
e−j(mπζ+nπη)+n̂ob(û, v̂) (6)

where ŷ′
H(û, v̂) (û, v̂ ∈ [−π, π]) is defined as

ŷ′
H(û, v̂) = {p̂L(û, v̂)/p̂H(û, v̂)} ŷH(û, v̂) (7)

and pL is the PSF of the LR image. Equation (6) means that ŷL(û, v̂)
consists of four spectral components of ŷ′

H(û, v̂), and an additive
noise n̂ob(û, v̂), where all the observation noises are put together.
This relation can be derived from Eqs. (3)–(5).

2.2. Lossy Image Compression Model

Assume that images are modeled as zero-mean wide-sense station-
ary Gaussian signals. Based on the rate distortion theory [6], the
minimum rate RH and distortion DH of the HR image are given by

RH(θ) =
1

4π2

Z π

−π

Z π

−π

max

»

0,
1

2
log2

ΦyH (û, v̂)

θ

–

dûdv̂ (8)

DH(θ) =
1

4π2

Z π

−π

Z π

−π

min[θ, ΦyH (û, v̂)]dûdv̂ (9)

where ΦyH (û, v̂) is the power spectral density (PSD) of yH defined
over û, v̂ ∈ [−π, π], and θ is a parameter to control the tradeoff
between the minimum rate and distortion. Similarly, the minimum
rate RL and distortion DL of the LR image are given by

RL(θ) =
1

π2

Z π

0

Z π

0

max

»

0,
1

2
log2

ΦyL(û, v̂)

θ

–

dûdv̂ (10)

DL(θ) =
1

π2

Z π

0

Z π

0

min[θ, ΦyL(û, v̂)]dûdv̂. (11)

where ΦyL(û, v̂) is the PSD of yL, whose explicit form is given
from Eqs. (6) and (7) as

ΦyL(û, v̂) =
X

m,n∈{0,1}

Φy′
H
(û − mπ, v̂ − nπ)

16
+ Φnob(û, v̂) (12)

where Φy′
H

(û, v̂) and Φnob(û, v̂) are the PSDs of y′
H and nob. Here,

it is assumed that nob and yH are independent, and auto-spectral cor-
relations of yH can be ignored.1 Note that the integration ranges of
Eqs. (10) and (11) are limited to û, v̂ ∈ [0, π] following the domain
of definition of ŷL(û, v̂) given by Eq. (6).

According to the discussion in [8], the LR image after lossy
compression, yL,θ , can be described as

ŷL,θ(û, v̂) = ĝ(û, v̂; θ) ŷL(û, v̂) + n̂code(û, v̂; θ) (13)

where the gain term, g(û, v̂; θ), and the PSD of the additive noise,
n̂code(û, v̂; θ), are given by

ĝ(û, v̂; θ) = max [ 0, 1 − θ/ΦyL(û, v̂) ] (14)
Φncode(û, v̂; θ) = max [ 0, θ (1 − θ/ΦyL(û, v̂)) ] . (15)

2.3. Super-Resolution Reconstruction

Assume that multiple LR images with the same compression quality
are available at the receiver side. The goal of SR decoding is to
recover the underlying HR image from these LR images.

Let k and K be the index and number of the LR images, respec-
tively. Using Eqs. (6) and (13), we have K equations:

ŷL,θ = MGθ ŷH + n̂θ (û, v̂ ∈ [0, π]) (16)

whose explicit form is given in Fig. 2. The sampling offset (ζk, ηk),
observation noise nob,k, and coding noise ncode,k are denoted with a
subscript k, because they depend on k. We assume the sampling off-
set of each image is known, but the noise terms are unknown except
their statistical properties like PSDs. Thereby, in the above equation,
we know ŷL,θ , M, and Gθ . We also know the statistical property of
n̂θ . The unknown to estimate is ŷH, the underlying HR image.

Estimation of ŷH can be achieved by deconvolution of Eq. (16)
with Tikhonov regularization as

˜̂yH,θ = FθŷL,θ, Fθ = (G∗
θM

∗MGθ + λI)
−1

G∗
θM

∗ (17)
1The latter assumption is justified by the fact that Karhunen-Loeve trans-

form converges to Fourier transform under some condition [7], thereby, the
spectral components are nearly uncorrelated.
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where Fθ is a reconstruction filter, λ is a positive constant to avoid
singularity, I is the identity matrix, and ∗ denotes the conjugate
transpose. The estimation error can be represented as a form of the
covariance matrix

Cθ,û,v̂ = E[(˜̂yH,θ − ŷH)(˜̂yH,θ − ŷH)∗]

= (I−FθMGθ)E[ŷHŷ∗
H](I−FθMGθ)

∗+FθE[n̂n̂∗]F∗
θ (18)

where E[ ] denotes the expectation. We assume that yH , nob,k and
ncode,k are independent and auto-spectral correlations of ŷH can be
ignored, so that non-diagonal elements of E[ŷHŷ∗

H] and E[n̂n̂∗] are
zero, which eases the calculation.

As shown by Eq. (17), the reconstruction filter Fθ actually de-
pends on the the compression quality θ. However, the compression
quality is rarely considered in conducting SR reconstruction. To sim-
ulate this condition, we use F0 (meaning θ = 0, corresponding to
the reconstruction filter for non-compressed images) in Eqs. (17) and
(18) regardless of the compression quality.

Given the error model of Eq. (18), we obtain the rate-distortion
model for SR decoding. The minimum rate RSR(θ) is

RSR(θ) = RL(θ)/4. (19)

because the number of pixels becomes four times by the SR recon-
struction. The minimum distortion DSR(θ) is

DSR(θ) =
1

4π2

Z π

−π

Z π

−π

DSR(û, v̂; θ)dûdv̂

DSR(û, v̂; θ) =

8

>

<

>

:

Cθ,û ,v̂ (1, 1) û ≥ 0, v̂ ≥ 0
Cθ,û+π,v̂ (2, 2) û < 0, v̂ ≥ 0
Cθ,û ,v̂+π(3, 3) û ≥ 0, v̂ < 0
Cθ,û+π,v̂+π(4, 4) û < 0, v̂ < 0

(20)

where Cθ,û,v̂(1, 1) denotes the (1, 1) element of the matrix Cθ,û,v̂

2.4. Numerical Analysis

The purpose of the numerical analysis is to compare the theoretical
rate-distortion (R-D) performances between the HR coding and LR
coding with SR decoding. The R-D performance for the former case
is given by RH(θ) and DH(θ) in Eqs. (10) and (11), and for the lat-
ter case, by RSR(θ) and DSR(θ) in Eqs. (19) and (20). By changing
the value of θ, we can draw R-D curves.

As a widely used model of natural images [8],

ΦyH (û, v̂) =
2π

ω2

„

1 +
û2 + v̂2

ω2

«− 3
2

(ω = − ln(ρ)) (21)

is adopted, where ρ denotes the correlation between adjacent pixels,
which was set to 0.90. As the point-spreading function, we adopted
pH(u, v) = box(u, v; 1) and pL(u, v) = box(u, v; 2) where

box(u, v; L) =



1/L2 u, v ∈ [−L/2, L/2]
0 otherwise (22)

whose spatial supports correspond to the pixel sizes of the HR and
LR images (1×1 and 2×2) , respectively. The observation noise is
assumed to be white, denoted as Φnob(û, v̂) = σ2

nob
. The sampling

offsets (ζk, ηk) were generated as uniform random values in [−1, 1].
λ for Tikhonov regularization in Eq. (17) was set to 0.01.

Figure 3 shows the results of analysis. In the top graph, K (num-
ber of images used for SR decoding) was varied while σ2

nob
(mag-

nitude of observation noise) was fixed to 0. Meanwhile, in the bot-
tom graph, σ2

nob
was varied while K was fixed to 10. Both of the

graphs show that SR decoding exhibits its advantage in low bitrates.
However, in higher bitrates, SR decoding reaches the ceiling and is
overtaken by the HR coding. The maximum quality achieved by SR
decoding depends on the values of K and σnob ; the larger K and the
smaller σnob have positive effects in the resulting quality.
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Fig. 3. Numerical analysis of R-D performance: (top) K is varied,
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= 0, (bottom) σ2
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is varied, K = 10.

3. REAL IMAGE SIMULATION

We conducted a controlled real-image simulation to confirm the nu-
merical model presented in Section 2.

A grayscale image with very high resolution (4200×2800 pix-
els) shown in Fig. 4 was used as the source signal x(u, v), from
which HR and LR images, yH,k(u, v) and yL,k(u, v), whose pixel
sizes are 10×10 and 20×20 pixels, respectively, were generated as:

yH,k(u, v) = (x ∗ pH)(10u + ζk, 10v + ηk) (23)
yL,k(u, v) = (x ∗ pL)(20u + ζk, 20v + ηk) + nob(u, v) (24)

where k is the index, the sampling offsets (ζk, ηk) ∈ Z2 (k =
1, ...K) were generated in random, and pH and pL are the box-
shaped PSFs whose supports correspond to the pixel sizes. Observa-
tion noise is Gaussian and added only to the LR images, because we
focus on the relative observation difference between the HR and LR
images. We compressed those images using cjpeg codec with a flat
quantization matrix. The compressed images with quality factor Q
are denoted as yH,Q,k(u, v) and yL,Q,k(u, v).

We then conduct SR reconstruction to estimate each HR image
ỹH,Q,k(u, v) (k = 1, . . . , K) using all LR images compressed with
quality factor Q by minimizing an energy function EQ as

ỹH,Q,k(u, v) = argmin EQ(yH,k(u, v)) (25)

EQ(yH,k(u, v)) =
X

k′

‖yL,Q,k′(u, v) − Pk→k′(yH,k(u, v))‖2

+ λ‖yH,k(u, v) − mean(yH,k(u, v))‖2 (26)

where Pk→k′ denotes the geometrical mapping from the k-th latent
HR image yH,k(u, v) to the k′-th LR image yL,k′(u, v). This map-
ping can be obtained from the shape of the PSFs pH and pL, and
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Fig. 4. Input image used for the experiment.

the known sampling offsets (ζk, ηk). The regularization parameter
λ was set to 0.1 according to empirical tests. Note that SR recon-
struction of our real-image simulations is performed in the spatial
domain, but the mathematical model is essentially equivalent with
the frequency-domain deconvolution represented as Eq. (17).

Finally, the rates and distortions for the two coding scenarios are
measured by the averages over K images as

RH(Q) =
X

k

bitrate(yH,Q,k(u, v))/K (27)

DH(Q) =
X

k

mean
`

‖yH,Q,k(u, v) − yH,k(u, v)‖2´

/K (28)

RSR(Q) =
X

k

bitrate(yL,Q,k(u, v))/(4K) (29)

DSR(Q) =
X

k

mean
`

‖ỹH,Q,k(u, v) − yH,k(u, v)‖2´

/K (30)

where the bitrates are obtained from the filesizes and the number
of pixels. Plotting (R(Q), D(Q)) with different quality factors Q
yields a rate-distortion curve.

The top graph in Fig. 5 shows the results with K = 5 and 10.
Performance of bicubic upsampling (each LR image was indepen-
dently upsampled) is also shown for reference. In the bottom graph,
K was fixed to 10, while σnob (the standard deviation of the obser-
vation noise) was varied. The overall tendency is similar to Fig. 3
which was derived from the numerical model analysis.

4. DISCUSSION AND CONCLUSION

The rate-distortion performance of super-resolution (SR) decoding
was analyzed in this paper. We first presented a numerical model
that combines a frequency-domain SR model and a rate-distortion
theory to derive the theoretical performance of SR decoding. We
also conducted real-image simulations to compare the results with
the theory. We showed that both of them exhibit quite similar ten-
dencies: SR decoding performs better in low bitrates, but reaches the
ceiling in higher bitrates. Although our analysis was limited to an
idealized configuration, we believe our approach opens a new vista
to deductive analysis of SR decoding.

The future work should be focused on the generalization of the
numerical model, because we ignored many practical factors for
simplification: inter-frame prediction coding, non-global and non-
translational registrations, registration errors, etc. We are also inter-
ested in the joint optimization of lossy compression and SR recon-
struction, in which both algorithms might be tuned and modified to
improve the overall performance. Furthermore, faster and more re-
liable implementation of SR reconstruction is an important issue for
SR decoding to be applied to communication systems.

15 

20 

25 

30 

35 

0 0.5 1 1.5 2 

PSN
R

 (dB
)

bitrate (bit/pixel)

HR

SR (K=10)

SR (K=5)

bicubic upsampling

15 

20 

25 

30 

35 

0 0.5 1 1.5 2 
bitrate (bit/pixel)

PSN
R

 (dB
)

HR

SR (        = 3 )

SR (        = 2 )

SR (       = 0 )

Fig. 5. Real image simulation of R-D performance: (top) K was
varied, σnob = 0, (bottom) σnob was varied, K = 5.

5. REFERENCES

[1] S.-C. Park, M.-K. Park, and M.-G. Kang, “Super-resolution im-
age reconstruction: a technical overview,” IEEE Signal Process-
ing Magazine, vol. 20, no. 3, pp. 21–36, May 2003.

[2] G.M. Callico, A. Nunez, R.P. Llopis, R. Sethuraman, and M.O.
de Beeck, “A low-cost implementation of super-resolution based
on a video encoder,” Annual Conf. of the Industrial Elec. Soci-
ety, vol. 2, pp. 1439–1444, 2002.

[3] R. Molina, A.K. Katsaggelos, L.D. Alvarez, and J. Mateos, “To-
wards a new video compression scheme using super-resolution,”
SPIE-IS&T Electronic Imaging, Visual Communications and
Image Processing 2006, vol. 6077, 2006.

[4] S. Ma, L. Zhang, X. Zhang, and Wen Gao, “Block adaptive
super resolution video coding,” Advances in Multimedia Infor-
mation Processing - PCM2009, pp. 1048–1057, 2009.

[5] R.Y. Tsai and T.S. Huang, “Multipleframe image restoration and
registration,” Advances in Computer Vision and Image Process-
ing, pp. 317–339, 1984.

[6] T. Berger, “Rate distortion theory,” Englewood Cliffs, NJ:
Prentice-Hall, 1971.

[7] U. Grenander and G. Szego, “Toeplitz forms and their applica-
tions,” Berkeley, Calif.: University of California Press, 1958.

[8] B. Girod, “The efficiency of motion-compensating prediction
for hybrid coding of video sequence,” IEEE Journal on Selected
Areas in Communications, vol. 5, no. 7, pp. 1140–1154, 1987.

2011 18th IEEE International Conference on Image Processing

1668


