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ABSTRACT

This paper proposes an adaptive HTTP-based video streaming
framework for mobile networks using the Scalable Video Cod-
ing (SVC) extension to the H.264 standard. We present a method
to statistically estimate the channel at the mobile client and use it
in our work to adapt the bit rate of the video. The adaptation takes
into account both the quality contributions and the probability of
successful timely decoding for different video segments. The simu-
lation results show significant improvements in terms of a reduction
of playback interruptions and improved perceived quality of service.

Index Terms— Mobile multimedia communication, Scalable
video, HTTP-based video streaming

1. INTRODUCTION

Rapid deployment of the 3G and 4G mobile networks and a large
variety of smart phones in the market have increased the popularity
of mobile video streaming significantly. A large portion of that traf-
fic is carried out over TCP due to several benefits, e.g, it is already a
widely deployed protocol, compatibility with existing infrastructures
and fewer problems with firewalls. However, the TCP throughput in
a mobile environment is not only affected by congestion in the net-
work, but also by variation in reception quality due to fading and
interference as well. Given that TCP traffic is likely to be treated as
best-effort with no QoS guarantee from the network, this fluctuation
in throughput can severely degrade the streaming quality.

This paper proposes a TCP-based adaptive streaming frame-
work using H.264/SVC designed for the mobile networks. The
proposed architecture has a typical HTTP-style client-server rela-
tionship where the mobile client makes the adaptation decisions
and requests video segments from the server. Additionally, it is
compatible with the ongoing Dynamic Adaptive Streaming over
HTTP (DASH) standard [1] which specifies how the media should
be presented and retrieved, but not the adaptation algorithm itself.

Other works related to TCP-based video streaming are, e.g, [2],
[3], [4], [5] and the references therein. [2] demonstrates the benefit
of using SVC with TCP streaming to improve caching and storage
efficiency of the servers. [3] and [4] propose an adaptation mech-
anism to adapt the number of enhancement layers in each frame.
However, the algorithm resides on the server which can significantly
increase its load. It also does not permit sending separated enhance-
ment layers, when opportunities allow, to already-transmitted frames
which are not due for decoding yet. This limits the adaptation op-
tions and the ability to exploit the full potential of the scalable video.
This is also the case in [5] where the adaptation of the frame rate is
done only for the currently considered part of the video.

The contributions of this work are as follows. First, it introduces
a DASH-compatible adaptation engine for HTTP-based streaming

with SVC which allows sending of additional enhancement layers
later to improve any parts of the stream sent previously but are not
decoded yet for a better RD performance. Second, a simple and
accurate method to estimate a mobile channel throughput for making
adaptation decisions is presented. Simulations with a Long Term
Evolution (LTE) mobile network simulator show that our approach
is able to follow changes in the throughput well. In addition, the
algorithm runs at the client which reliefs the server’s load in practical
scenarios. It requires neither additional network node nor cross-layer
activity, but only properly-prepared videos at the server and simple
Round Trip Time (RTT ) and throughput measurements at the client.

The rest of this paper is organized as follows. Section 2 de-
scribes the method to estimate the throughput of the mobile channel.
Section 3 covers the preparation of the SVC videos while the adap-
tation algorithm is discussed in Section 4. Lastly, simulation results
and conclusions are provided in Section 5 and 6, respectively.

2. ESTIMATING WIRELESS TCP THROUGHPUT

This section covers a method the client uses to estimate the probabil-
ity of getting a number of bytes from a TCP connection over a wire-
less channel in a limited time. For a wireless channel based on the
Carrier Sense Multiple Access (CSMA) technique, TCP is known to
misinterpret channel losses as congestion-related losses and inappro-
priately reduces its transmission rate [6]. However, for the LTE-like
technologies where there are several retransmission mechanisms at
the MAC layer, channel losses are converted into larger delay and
congestion-related losses when the base station’s buffer is full in-
stead. This justifies the TCP’s behavior of reducing its transmission
rate on losses. The streaming application can hence observe and es-
timate the channel from the long term throughput TCP provides.

In LTE, the allocation of small temporal-frequency radio re-
source units or “radio chunks” to mobile clients is done by a base
station’s resource scheduler at every 2ms Transmission Time Inter-
val (TTI). Clients with good instantaneous channels are likely to be
given more radio chunks in successive TTI’s to take advantage of
their brief favorable channels than others with worse channels, e.g,
suffering deep fading. By measuring a lot of instantanoues through-
put which reflects the channel and the scheduler’s decision, the client
should be able to infer its future throughput as well. Let the esti-
mated amount of bytes the client gets in a period of T seconds be
a random variable, denoted as BT , and be thought of as a sum of
smaller random variables Bτ where T is in a range of 5-20 seconds
and τ is much smaller to have sufficient number of summands.

BT = Bτ,1 +Bτ,2 + . . .+Bτ,N ;N = dT/τe (1)

However, setting τ to be too small, comparable to the TTI will result
in high fluctuation of Bτ where most of them are close to zero and
only a small fraction has large values representing a burst of data.

2011 18th IEEE International Conference on Image Processing

978-1-4577-1302-6/11/$26.00 ©2011 IEEE 2241



0 1 2 3

x 10
5

0

1

2

3

4
x 10

4

B
0.1sec

F
re

q
u
e
n
c
y

0 2 4

x 10
6

0

1000

2000

3000

4000

5000

F
re

q
u
e
n
c
y

B
20sec

Fig. 1. Distribution of BT for different time periods

Such Bτ shows signs of a heavy-tailed distribution with a large or
infinite variance, thus renders the Central Limit Theorem (CLT) un-
usable to estimate BT . In addition, successive Bτ ’s at such a short
τ will show high correlation between them, e.g, they tend to have
similar values, either very small due to fading or very large during a
burst of data since the fast fading effect could last for several TTI’s.

From experimental results, τ of 100 ms provides a good balance
between having enough Bτ samples and reducing fluctuation and
correlation among them since aBτ covers as many as 50 TTI’s. Thus
a short-term effect at TTI level is partially averaged, although signs
thatBτ is heavy-tailed are still present as shown in the left histogram
of Figure 1. If Bτ is approximated by a heavy-tailed Log Normal
distribution, BT which is a sum of Bτ can also be approximated as
Log Normal as well [7]. This is confirmed by the right histogram
of BT at 20 seconds in Figure 1 which shows its tendency toward
a Log Normal distribution. Thus, BT ≈ LogN

(
µ, σ2

)
where µ

and σ2 are defining parameters of the distribution to be estimated.
[7] approximates them by pairing the mean and variance of BT with
those of the sum and solve for the µ and σ2 as follows.

E (BT ) = E (Bτ,1 +Bτ,2 + . . .+Bτ,N ) (2)

eµ+σ
2/2 = N · E (Bτ ) (3)

Similarly, equation (4) and (5) are from pairing the variances.

var (BT ) = var (Bτ,1 +Bτ,2 + . . .+Bτ,N ) (4)

e2(µ+σ
2) − e2µ+σ

2

= Nvar (Bτ ) + 2
∑
i<j

Cov (Bτ,i, Bτ,j) (5)

Solving (3) and (5), the µ and σ2 can be written as follows.

µ = ln

 N2E2 (Bτ )√
Nvar (Bτ ) + 2

∑
i<j Cov (Bτ,i, Bτ,j) +N2E2 (Bτ )


(6)

σ2 = 2 (ln (N · E (Bτ ))− µ) (7)
The covariance terms in (6) which involve all combinations of

Bτ,i and Bτ,j where 1 ≤ i < j ≤ N are the result of breaking up
the variance of the sum of correlated random variables Bτ in (4). To
avoid calculating all these terms, assume the correlation amongBτ,i
and Bτ,j to be negligible once |i− j| > 2, e.g, they are more than
200 ms apart. Let Φ1 = Cov (Bτ , B

′
τ ) and Φ2 = Cov (Bτ , B

′′
τ )

be the covariance between Bτ and the adjacent B′τ and between Bτ
and B′′τ that are two τ periods away. We have an approximation∑

i<j

Cov (Bτ,i, Bτ,j) ≈ (N − 1) Φ1 + (N − 2) Φ2 (8)

From its recorded samples of Bτ , the client estimates the µ and
σ2 from (6), (7) and (8). The success probability Q of getting bQ
bytes within T seconds, denoted as P (BT ≥ bQ, T ) or P (bQ, T )
can then be derived from the Log Normal’s Complementary CDF as
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Fig. 2. Estimated and actual success probabilities

T Q = 0.1 Q = 0.2 . . . Q = 0.9
T1 b11 b21 . . . b91
T2 b12 b22 . . . b92

Table 1. An example look-up table of bQ with respect to Q and T

P (bQ, T ) = Q =
1

2
− 1

2
erf

(
ln (bQ)− µ√

2σ2

)
(9)

bQ = exp
(√

2σ2 · χQ + µ
)

(10)

Here, χQ = erf−1 (1− 2Q) depends only on the success probabil-
ity Q and can be pre-computed beforehand. A look-up table of bQ
with respect to various Q and T similar to Table 1 can be quickly
constructed every time the client needs to estimate the success prob-
ability. Note the relationship from (1) that N = dT/τe.

Figure 2 shows the accuracy of the estimation from simulations
where the estimated success probability Q is plotted against the ob-
served probability that the amount of bytes received within T sec-
onds is no less than the corresponding bQ. The result shows satis-
factory accuracy where estimations for various values of T are most
of the time very close to the “ideal” line. The settings for these sim-
ulations will be covered in more details later in Section 5.

3. CONTENT PREPARATION

The SVC extension of H.264 [8] allows video adaptation on-the-fly
by adding or removing enhancement layers from it. Since the client
must be able to request different layers separately, the video is first
cut into smaller self-decodable units called “chunks” which can be,
e.g, one or more Group of Pictures (GoP). Then smaller Network
Abstraction Layer (NAL) units in each chunk are grouped further
into “blocks” such that each block represents only a single layer of
that chunk. This is shown in Figure 3 where a chunk of 1 GoP with 4
temporal and 1 Medium Grain Scalability (MGS) layers is cut into 8
blocks. To decode this chunk, at least block 0 for the lowest temporal
scalability layer must be present. More enhancement blocks can be
requested given that their “ancestry” blocks have been requested. In
this example, temporal layers are requested before MGS layers due
to quality improvement in having a higher frame rate is generally
better than having more MGS layers. In addition, the RD informa-
tion in terms of quality improvement, e.g, ∆PSNR that each layer
contributes from its lower layer of each chunk must be generated
during encoding and made available to the client as well.
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Fig. 3. An example on preparing video content into blocks

Fig. 4. An adaptation window of size M × L

4. CLIENT’S ALGORITHM

4.1. Definitions

Let each block from a video with L layers be identified by a coor-
dinate pair (c, l) where c ∈ {0, 1, . . .} and l ∈ {0, 1, . . . , L− 1}
denote the chunk and layer ID respectively. B (c, l) is the size of
the block and Q (c, l) represents the quality improvement from its
lower-layer block (c, l − 1) if l > 0 or the total quality if l = 0, e.g,
it is the base-layer block. The client manages its receiving buffer
by constructing an imaginary “adaptation window” of size M × L
blocks as shown in Figure 4. The “decoding line” marks the chunk
currently being retrieved and decoded from the buffer. The window
is shifted forward continuously such that it always covers the nextM
chunks from the decoding line. In addition, let the simulation time t
start from 0, the initial buffering time be Tinit and the chunk period
be Tp. Thus the time remaining for a block (c, l) in the window from
the current simulation time until it is due to be decoded is

TR ((c, l) , t) = Tinit + cTp − t (11)

Let K be the number of unrequested blocks remaining in the
adaptation window. A request sequence Ŝ is defined as

Ŝ =
{

(c, l)i | (c, l)i is missing, i = 1, 2, . . . ,K
}

(12)

which is a set of allK missing blocks and represents the schedule the
client will request for these blocks from the server sequentially based
on the order of their appearances, denoted by a subscript i. The or-
dering of blocks in Ŝ must also comply with their dependencies, e.g,
a block (c, l)i can be requested if its missing ancestry blocks such
as its lower-layer blocks or the base-layer blocks of the preceding
chunks are requested in any of the i− 1 positions before it in Ŝ.

At each decision instance, there are many possible request se-
quences the client can choose from. Thus, a quality metric for a
sequence Ŝ at time t is defined as follows to compare between them.

Qtot
(
Ŝ, t
)

=
K∑
i=1

[
Q
(
(c, l)i

)
P
(
Bi, TR

(
(c, l)i , t

))]
(13)

Each individual summand is the quality contribution Q
(
(c, l)i

)
of

each block (c, l)i in Ŝ weighted by its success probability in getting
all the preceding i − 1 blocks and itself within its decoding time as
defined in (9) and (11). Here, Bi represents the total size of the first

for n = 1 : K do
foreach (c, l)p ∈ ÎR̂ where p = 1, 2, . . . ,

∣∣∣ÎR̂∣∣∣ do
Ŝpn = Ŝn−1;
Move (c, l)p from its original location to the nth

location in Ŝpn;

Calculate Qpn
(
Ŝpn, t

)
;

end
Ŝn = arg max∀Ŝp

n

(
Qpn

(
Ŝpn, t

))
;

Update R̂ = R̂ ∪
{

(c, l)n
}

where (c, l)n ∈ Ŝn;
Update ÎR̂;

end
Algorithm 1: The client’s algorithm to determine Ŝopt

Fig. 5. RTT measurement by the client

i blocks in Ŝ, e.g, Bi =
∑i
j=1B

(
(c, l)j

)
. The success probability

is obtained from a look-up table similar to Table 1 with M rows
representing decoding times of all M chunks in the window.

4.2. Determining the best request sequence

First, define and initialize R̂ as a set of all received blocks in the
window. Also, ÎR̂ is a set of all blocks that can be immediately
requested given that their ancestry blocks have been included in R̂.
For example, shaded blocks in Figure 4 which represent the already-
received blocks in the window are included in R̂ at initialization.
The ÎR̂ in this case is initialized to include blocks (C, 2), (C + 1, 1)

and (C + 2, 0) since their ancestry blocks are already in R̂. Finally,
initialize a starting sequence Ŝ0 to be a sequence that progressively
requests all missing blocks of a chunk first before moving on to the
next chunk. Figure 4 shows an example of Ŝ0 with a dashed line.

The proposed Algorithm 1 works iteratively to find the best re-
quest sequence Ŝopt. At each step n = 1, . . . ,K, the best block to
request at the nth position of Ŝn−1 from the previous step will be
selected out of all the blocks that can be immediately requested at
this position, which by definition are the members of ÎR̂. Denote

these blocks as (c, l)p ∈ ÎR̂ where p = 1, . . . ,
∣∣∣ÎR̂∣∣∣ and

∣∣∣ÎR̂∣∣∣ is the

total number of blocks in ÎR̂. For each p, the algorithm tries moving
a block (c, l)p from its original position to the nth position of Ŝn−1

instead, denoted the modified sequence as Ŝpn. The best block to be
placed at this location, or equivalently the best modified sequence
Ŝpn is the one that yields the highest metric in (13) and is selected to
be Ŝn. This selected block is also added to R̂ and ÎR̂ is updated for
the next round. These steps continue until n = K and the blocks to
request at all K locations are selected, thus Ŝopt = ŜK is found.

However, the client should not request all K blocks in Ŝopt at
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once since the transmission for these blocks could last several sec-
onds, during which time, the channel might have changed and a bet-
ter adaptation decision could be made instead. On the contrary, re-
questing too few blocks from Ŝopt would result in low channel uti-
lization, especially if the RTT is relatively large compared to the
transmission time of a block. Thus, the amount of blocks, or bytes
to request is determined such that the approximated channel utiliza-
tion exceeds a certain threshold, e.g, 80%. This requires the client to
take regular measurements of the RTT between sending the request
until the first byte of the reply arrives as in Figure 5. The utilization
rate U where Tb is the transmission time of requested blocks is

U = Tb/ (Tb +RTT ) (14)

The minimum bytes to request such that a target Umin is achieved is

Bmin = (minimum Tx period to achieve Umin)(avg. throughput)

Bmin = ((Umin ·RTT ) / (1− Umin)) · (E (Bτ )/τ) (15)

5. SIMULATION RESULTS

Simulations of the proposed algorithm with a SVC-encoded video
and of a non-adaptive streaming with an AVC-encoded video were
conducted using the LTE mobile network simulator [9] which simu-
lates the wireless channel of the LTE between an external server and
a client connected to it. There were 8 best-effort clients in the cell
including the streaming client walking randomly at 3 km/h which
received no QoS guarantee from the network. The video used was a
concatenation of the Crew, Mobile and Soccer clips. It was encoded
into both a non-scalable AVC version at a bit rate of 1.7 Mbps and a
scalable SVC at a bit rate from 1.2 to 1.9 Mbps at the same quality.
The SVC version has 5 operating points with MGS scalability.

The client recorded the Bτ at τ of 100 ms in the last 20 seconds
for throughput estimation. The Tinit was set to 7 seconds and the
adaptation window was of size 20×5 blocks. In addition, the client
would stop the playback and wait for more data if its buffer was
empty. Both the AVC and SVC simulations lasted for 30 minutes.

Figure 6 captures an instance from the simulation when the
channel’s Signal to Interference and Noise Ratio dropped due to the
client being at the cell’s edge. The number of layers for the SVC
case was reduced as an adaption result to the decreasing throughput.
On the contrary, the number of layer for the AVC case was always 1
since no adaptation was possible, causing longer playback interrup-
tion compared to the SVC case. Table 2 shows the average number
of layers and the PSNR of the video, the percentage of interruption
time and the Mean Opinion Score (MOS) for both cases. The MOS
was computed from the Video Quality Metric (VQM) score which is
an approximation of the user’s perceived streaming quality [10] and
scaled to be in 0-5 range where 5 is the best quality. Then the effects
of interruption were modelled by applying a degradation factor as
a function of the interruption time to the original MOS [11]. It is
obvious that even though the resulting PSNR of the SVC case was
slightly lower than the AVC due to layer removal, the SVC still
achieved higher MOS as a result from having fewer interruptions.

6. CONCLUSIONS

This paper presents a method to estimate a mobile channel through-
put and a HTTP-based adaptive streaming algorithm for SVC-
encoded materials with any kind of scalability. The algorithm only
requires properly prepared video contents and their RD information
at the server. At the client, only basic throughput andRTT measure-
ments are required. Simulations show satisfactory results both for
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Fig. 6. Effect of degrading channel SINR on AVC and SVC

No. of layers PSNR(dB) Interruption(%) MOS
AVC 1 35.28 21.33 3.67
SVC 4.15 34.29 6.98 4.11

Table 2. Key performance indicators from simulations

the accuracy of the throughput estimation and the algorithm’s adapt-
ability to varying mobile channel throughput. This results in fewer
playback interruptions and improved user’s viewing experience.
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