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ABSTRACT
The increasing popularity of user-generated content and the high
quality upstreaming capabilities of mobile phones indicate a preva-
lence of video traffic in the uplink of next generation mobile net-
works. Need arises for optimizing the network resource allocation
while preserving the user satisfaction. In this paper, we propose a
service-centric approach for uplink distribution of real-time user-
generated content based on the Quality of Experience (QoE) and
popularity of the video content. In case of limited network resources,
the proposed approach assigns more resources for popular contents
while maintaining a minimum guaranteed QoE for the less popular
ones. We compare our service-centric approach with a QoE-driven
one that does not consider video popularity and evaluate both ap-
proaches for the uplink of an LTE system. The simulation results
show that a significant gain in terms of average user satisfaction can
be achieved.

Index Terms— Quality of Experience, service-centric resource
allocation, LTE uplink, video popularity

1. INTRODUCTION

There is a proliferation of mobile phones equipped with digital cam-
eras that allow the upstreaming of high quality multimedia content.
Users capture real-time events and share them with other users,
for instance, on video portals. The analysis of large-scale User-
Generated Content (UGC) shows that the users’ requests are highly
skewed towards popular videos [1]. In their work on YouTube traffic
characterization, the authors of [2] find that the video popularity is
Zipf-like.

In this paper, we try to answer the following question: Given that
not all upstreamed videos have the same popularity, can we improve
the user satisfaction by optimizing the uplink resource allocation for
the live captured videos? Despite the growing interest in UGC sys-
tems and services, there is no prior work that addresses our problem.
Popularity has been traditionally exploited in cache management for
proxy servers, whereby a proxy stores the initial frames of popu-
lar videos [3]. In [4], an analytical model for the design of coding
strategies for time-shifted personalized video content is described.
The authors show that a higher multicast gain can be achieved by
considering the content popularity. In [5], the skewed popularity
distribution in file sharing is utilized for optimal placement of the
resources in structured Peer-to-Peer networks. By accelerating the
search for popular contents, the average search cost for the whole
system is reduced. Most relevant for our work is the popularity-
aware scheduling for network coding based content distribution in
ad hoc networks [6]. Network-coded blocks are assigned a pop-
ularity value based on the requests from neighboring nodes. The

transmission efficiency can be improved by assigning higher chan-
nel access priorities to popular blocks. Class-based resource alloca-
tion has been intensively studied in the literature (e.g., [7]). This is
fundamentally different from our work as we study the popularity of
UGC within the same video streaming service class.

Different from previous works, we propose a method for uplink
distribution of live video contents by addressing the popularity of
the content (i.e., number of followers), the video characteristics, and
the available network resources. We introduce a service-centric con-
cept that is based on video consumer-producer coordination through
a video portal (Figure 1). In such a scenario, multiple users are si-
multaneously connecting to a video portal for sharing their captured
live video content. The video portal ranks the video contents based
on the consumers’ requests and provides a central entity in the opera-
tor’s network (e.g., eNodeB) with a standardized feedback about the
popularity of the videos. This entity is then responsible for schedul-
ing and resource allocation among multiple video producers. We
see a big potential gain by optimizing the uplink resources based on
the popularity of video contents. Knowing that not all the live con-
tent uploaded to the portal has the same number of followers, our
approach allows for better user satisfaction among video consumers
and provides efficient use of the wireless medium.

The paper is organized as follows. In the next section we give
an overview of QoE-driven uplink resource allocation. Section 3
describes our service-centric model for the LTE uplink. In Section 4
we present our simulation results and Section 5 concludes this paper.

2. QOE-DRIVEN UPLINK RESOURCE ALLOCATION

The uplink of next generation mobile networks has to cope with
community portals for the upload and upstream of live media data.
As a result, new mechanisms for optimizing the video delivery are
required to match the user expectations. Cross-layer approaches for
resource allocation are considered to address this issue by exchang-
ing information across the different protocol layers [8]. More specif-
ically, application-driven cross-layer optimization (CLO) maximizes
the user satisfaction by jointly optimizing the application layer, link
layer and physical layer [9]. Recently, Quality of Experience (QoE)
based CLO has been proposed for resource allocation in wireless
networks (e.g., [10]).

In this paper, we consider a QoE-driven approach for uplink re-
source allocation. In particular, we are interested in characterizing
the QoE in video streaming applications. The utility function for
video streaming is defined in [10] by: U =MOS(R), whereMOS
is the Mean Opinion Score (MOS) function and R is the transmis-
sion data rate. We assume a linear mapping between MOS and Peak
Signal to Noise Ratio (PSNR). MOS can take on any value between
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Fig. 1. Schematic depiction of the proposed service-centric ap-
proach: A video portal collects the consumers’ requests and pro-
vides eNodeB with a feedback on the popularity of video contents;
eNodeB allocates the uplink resources among the video producers.

1.0 (30 dB) and 4.5 (42 dB), which represent the worst and best QoE,
respectively.

In a CLO context, varying the transmission rate at the radio link
layer allows the video application to adjust its encoding parameters
(e.g., rate, quantization parameter) to maximize its utility function.
Different from the downlink where the video application is con-
strained by the applied transcoding mechanism, an arbitrary set of
encoding parameters can be defined in the uplink (i.e., at the video
encoder). Figure 2 shows the utility functions for 10 different video
sequences encoded with the H.264 AVC video codec at QCIF res-
olution and a frame rate of 30 frames/sec. The application model
from [11] is used to generate an arbitrary set of points for each se-
quence. Each video sequence exhibits a different MOS-Rate gran-
ularity. In a multi-user scenario where each user is upstreaming a
different video, the transmission rates of the different users can be
determined such that the overall QoE is maximized.

3. SERVICE-CENTRIC MODEL FOR LTE UPLINK

3.1. Service-centric resource allocation

We extend the QoE-driven resource allocation into a service-centric
one by incorporating the feedback from a live video portal into the
uplink optimization. We consider that the popularity of a video con-
tent follows a Zipf-Mandelbrot law [12]. The popularity of a content
of rank k out of a population of C contents is defined by:

pk =
1/(k + q)s

HC,q,s
, HC,q,s =

C∑
i=1

1

(i+ q)s
(1)

where q and s are the shift and shape parameters of the distribu-
tion, respectively. By setting s to 0, all contents have the same pop-
ularity. As s increases, more requests are made for popular contents.
The content popularity, pk, is a weighting factor that shapes the util-
ity of user k according to the importance of the uploaded content.
Given a population of N video upstreaming users, each uploading
one content at a time, the utility-based maximization is defined by:

x̃opt = argmax
x̃∈X̃

N∑
k=1

Uk(x̃).pk where
N∑
k=1

pk = 1 (2)

x̃opt and X̃ are the optimal and the set of possible optimization
parameters abstracted from the protocol layers, respectively [13].

0 100 200 300 400 500 600 700 800 900 1000
1

1.5

2

2.5

3

3.5

4

4.5

M
ea

n 
O

pi
ni

on
 S

co
re

 (M
O

S
)

Rate (kbps)

 

 

football
bus
claire
mother
carphone
hall
coastGuard
akiyo
foreman
soccer

Fig. 2. Mean Opinion Score (MOS) as a function of data rate.

Please note that the formulation in (2) maximizes the sum of all users
objective functions. Alternative formulations are also possible (e.g.,
max-min utility [14]).

3.2. LTE uplink model

To evaluate our service-centric approach we developed an LTE up-
link simulator which follows the 3GPP LTE recommendations [15].
Our resource allocation problem is to assign the physical resource
blocks (PRBs) to different users such that the overall QoE is max-
imized. We consider a long-term radio link layer model with opti-
mization periods in the order of seconds. This allows us to integrate
our approach with any of the state-of-the art schedulers for LTE up-
link. Our objective is thus to determine the amount of resources (i.e.,
PRBs) assigned to each user in each optimization cycle. Once the re-
source share for each user is determined, the deployed scheduler can
assign the blocks in a contiguous manner.

To determine the achievable throughput per PRB for a given
Signal-to-Noise ratio (γ) we use the LTE link layer model from [16].
The model approximates the throughput in the uplink, after link
adaptation and hybrid automatic repeat request (HARQ), by an at-
tenuation factor β = 0.4 compared to the Shannon capacity (3). As
baseline uplink parameters, [16] defines a γmin of -10 dB, a γmax
of 15 dB and a maximum throughput Thrmax of 2 bps/Hz.

Thr =


0 for γ < γmin

β log2(1 + γ) for γmin < γ < γmax

Thrmax for γ > γmax

(3)

We consider that no instantaneous channel quality indicator
(CQI) is available but rather a long-term CQI update for each user.
At each optimization cycle, we generate a new channel realization
that follows the typical CQI distribution of the users in an urban
macrocell [17]. For a summary of the LTE parameters, please refer
to Table 1.

3.3. Cross-layer model

To abstract the application parameters (i.e., utility) and the link layer
parameters (i.e., data rate) we use the long-term cross-layer abstrac-
tion from [14]. The model defines the data rate Rk for user k as a
function of its resource share αk and its maximum achievable rate
Rmax,k if all the PRBs are allocated exclusively to user k, cf. (4).
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Table 1. LTE Parameters
Parameter Value

System bandwidth 5 MHz
Number of PRBs 25

Number of subcarriers 300
Bandwidth per PRB 180 KHz

Link layer model [16] see (3)
Channel model Urban macrocell [17]

CQI averaging cycle 1 sec
Simulation time 30 sec

Rk = fk(αk) = αkRmax,k 0 ≤ αk ≤ 1,∀k (4)

As a measure of utility, we use the MOS as defined in Section 2.
Our utility function in (2), that maximizes the sum of utilities of N
users given each’s content popularity, can then be described by:

argmax
(α1,...,αN )

N∑
k=1

MOSk(Rk).pk subject to
N∑
k=1

αk = 1 (5)

Eachαk value corresponds to the fraction of total PRBs assigned
to user k. A greedy algorithm, similar to the work in [18], is devel-
oped to determine the value of αk. It is initialized by assigning equal
amount of resources to every user. The algorithm iteratively takes a
small amount of resources from the user who is the least sensitive
to the decrease in resources and assigns it to the user who gets the
maximum benefit, until no further improvement in (5) is possible.

4. SIMULATION RESULTS

We consider two variants of our proposed service-centric approach:
1) A scheme that maximizes the overall user satisfaction and does
not provide any guarantees for the less popular contents (Max-
MOS+pop). 2) A scheme that defines a minimum guaranteed QoE
for all upstreamed videos (Max-MOS-Fair+pop). We first run the
Round Robin (RR) resource allocation scheme as a baseline to de-
termine the minimum QoE a user should get. The minimum QoE
of each user is then added as an additional constraint to solve the
optimization problem in (5). Generally, an explicit guaranteed QoE
value for each user or group of users can be defined (e.g., [14]).
We also compare our service-centric approach with a QoE-driven
one that does not consider video popularity (Max-MOS-Fair), and a
reference RR scheme that allocates to each user an equal number of
PRBs (RR).

We consider 25 different video sequences. At each simulation
run, the assignment of the sequences to upstream users is shuffled
to guarantee no particular sequence enjoys higher popularity. We
set the Zipf shape parameter for video popularity to 1.0 [1]. The
simulation parameters are summarized in Table 2.

We initially set the number of upstream users to 25, each up-
loading a different content. The number of downstream users is
fixed to 1000. Figure 3 shows the cumulative distribution function
(CDF) of the mean MOS for the different schemes. The mean MOS
is computed by averaging the MOS for all downstream users over
200 simulation runs, 30 sec each. Please note that this is one way to
measure the average user satisfaction while considering the down-
stream users’ requests across different contents. The Max-MOS-
Fair approach improves the mean MOS compared to the reference

Table 2. Simulation Parameters
Parameter Value

Num of sequences 25
Num of upstream users 5...50

Num of downstream users 1000
Zipf shape parameter 1
PSNR-MOS mapping Linear:(1,30 dB),(4.5,42 dB)

Application type Video streaming
PSNR-Rate model from [11]

Simulation runs 200
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Fig. 3. CDF of the mean MOS for 25 upstream users.

RR scheme. Both proposed service-centric approaches show an ad-
ditional gain compared to the QoE-driven approach as they take the
popularity of upstreamed contents into account. Meanwhile, the gain
decreases in the Max-MOS-Fair+pop approach as a result of the con-
straint on minimum guaranteed QoE for the less popular contents.

The above results can be further explained by inspecting the dis-
tribution of utilities and resource shares for each content. Figure 4
shows the average resource share per content as a function of the
rank of the content. Contents are indexed from 1 to 25 which repre-
sent the most and least popular contents, respectively. Both service-
centric approaches allocate more resources for popular contents and
the distribution of resource shares much reflects the Zipf popularity
distribution. Again, the Max-MOS-Fair+pop scheme shows a less
skewed distribution due to the fairness constraint. The other two
schemes will allocate on average equal resources for each content as
they do not consider the content popularity. Figure 5 shows the dis-
tribution of average utilities of the 25 uploaded contents, sorted by
their popularity. The Max-MOS-Fair approach provides an average
gain compared to RR for all contents, irrespective of the content pop-
ularity. The Max-MOS+pop scheme improves the utility of popular
contents dramatically. Less popular contents (i.e., contents which
receive fewer downstream requests) suffer a decrease in their indi-
vidual utilities at the expense of higher overall user experience. The
Max-MOS-Fair+pop scheme provides a slightly lower improvement
in utility for popular contents compared to Max-MOS+pop, but it
still guarantees a minimum QoE for the less popular contents (con-
tents 13 to 25 get the same utility as in the RR scheme).

Figure 6 shows the average MOS experienced by the down-
stream users as we vary the number of upstream users. When the
number of upstream users is low, there are enough uplink resources
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Fig. 5. Average utility for 25 upstream users.

and the performance of the QoE-driven and the service-centric ap-
proaches is similar. As we increase the number of upstream users,
the competition for resources is tighter and the service-centric ap-
proach improves the average MOS by prioritizing the popular con-
tents. For a target MOS of 3.0, the Max-MOS-Fair+pop approach
can admit 40 upstream users whereas the Max-MOS-Fair scheme
can admit 30 users compared to 23 users for an RR scheme. This
results in a system dimensioning gain of 25% and 42% compared to
the QoE-driven and RR approaches respectively, while maintaining
a minimum QoE for the less popular contents. The Max-MOS+pop
scheme can even achieve a larger average gain, in particular as the
network resources are more limited.

5. CONCLUSION

In this paper we introduced a service-centric approach that incorpo-
rates popularity feedback from a video portal into QoE-based uplink
resource allocation. The objective is to improve the overall user sat-
isfaction in loaded network situations by considering the asymmetry
in the users’ consumption of video contents. We addressed the fair-
ness issue that could result from prioritizing the video contents and
we set a minimum assured QoE for the less popular contents. The
proposed approach is evaluated for the uplink of LTE and compared
to a QoE-driven CLO scheme. We observed a significant and con-
sistent gain by including the popularity information into the uplink
resource allocation under various simulation scenarios.
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