
FAST AND ACCURATE IRIS SEGMENTATION BASED ON LINEAR BASIS FUNCTION AND
RANSAC

Kai Wang and Yuntao Qian

College of Computer Science, Zhejiang University, Hangzhou, China
zdwk223, ytqian@zju.edu.cn

ABSTRACT
Iris segmentation is a component of iris recognition system,
and noncircular iris is hard to segment accurately. This pa-
per presents an iris segmentation algorithm using linear basis
function and RANSAC (Random SAmple Consensus) which
iterately derives fine iris boundary curves from coarse iris
boundary points. The algorithm consists of three steps. In
step 1, coarse center and radius of iris are found using IDO
(IntegroDifferential Operators); in step 2, coarse iris bound-
ary points are located, and then a linear basis function model
is constructed to derive coarse iris boundary curves from the
boundary points; and in step 3, a RANSAC method is applied
to refine the iris boundary curves. The proposed algorithm is
tested on two datasets CASIA-Iris V3-Interval and IITD v1.0
and shows the effectiveness comparing with some popular al-
gorithms.

Index Terms— Iris segmentation, Noncircular iris, IDO,
Linear basis function, RANSAC

1. INTRODUCTION

Iris is the gray circular area around the pupil. Under the illu-
mination of near-infrared light, iris is rich of texture, the tex-
ture is stable and unique for everyone, which makes it ideal as
a biometric. Iris recognition system generally consists of four
main modules [1]: image acquisition, iris segmentation, fea-
ture extraction, and matching. During iris segmentation, inner
and outer boundaries of iris are found. Performances of the
next steps, feature extraction and matching, strictly depend
on result of iris segmentation, and segmentation errors will
significantly increase the HD (Hamming Distance) between
the iris images of a same eye [2]. Thus iris segmentation is a
crucial component of iris recognition system.

Present iris segmentation algorithms can be grouped into
two classes. The first class assumes that iris is circular or
oval, such as IDO (IntegroDifferential Operators) [3], Hough
Transform algorithm [4], and ellipse fitting algorithm [5]. The
second class assumes that iris is noncircular, such as AC (Ac-
tive Contours) [6], and GAC (Geodesic Active Contours) [7].
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The second class seems to be more reasonable, since iris im-
ages captured in commercial iris recognition systems are al-
ways noncircular. Daugman discussed that the EER (Equal
Error Rate) can be decreased by 90% by adapting AC instead
of enforcing circular models on some irises from NIST ICE-1
iris database [6].

Algorithms based on circular iris assumption produce er-
rors while segmenting irises with complex shapes, as is shown
in Fig.2(b). However, we can use them to obtain coarse iris
boundary points, then finding fine iris boundary is equal to
the machine learning problem which derives function curves
from data points.

In this paper we present an iris segmentation algorithm
that deals with noncircular iris using linear basis function and
RANSAC [8]. The algorithm contains three steps: step 1 finds
the coarse iris center and radius by IDO; step 2 derives the iris
boundary by a linear basis function model; step 3 refines the
iris boundary by RANSAC. A great advantage of our algo-
rithm is that it segments iris inner boundary accurately, while
it is reported that the iris points nearer the inner boundary is
more valuable than the other points [9].

The basis functions we choose in the linear basis func-
tion model are trigonometric functions, which are similar with
Fourier Expansion, which was used for iris segmentation by
Daugman [6]. As we know, the trigonometric functions may
be the best basis functions we can find for iris segmentation.

2. THE COARSE CENTER AND RADIUS

The first step is to find the coarse iris center and radius of iris.
Most of the present iris segmentation algorithms are capable
for this job, we choose IDO in this article because it is proofed
to be fast and accurate. IDO searches for the circle that has
the biggest sum of normalized gradient differentiation:

max
(r,x,y)

∣∣∣∣Gσ(r) ∗
∂

∂r

∮
r,x,y

I(x, y)

2πr
ds

∣∣∣∣ (1)

where (x, y) and r are center and radius of the circle searched
respectively, I is the iris image, Gσ(r) is a smoothing func-
tion, ∗ denotes convolution.

Fig.2(b) illustrates the located coarse circles.
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3. THE COARSE BOUNDARY CURVES

The second step of the algorithm is to derive the iris boundary
curves from the coarse iris boundary points. This step consists
of three substeps.

Firstly, the circular area of the upper H/2 and the lower
H/2 of each circle is projected to a rectangle whose height is
H and width is N , as is shown in Fig.1. The projection func-
tion is Eq.(2), where (xc, yc) is point on the circular, (i, hi) is
the according point on the rectangle. Fig.2(c, g) are illustra-
tions of the projected rectangle.{

xc = (r + hi − H
2 ) cos(360

i
N )

yc = (r + hi − H
2 ) sin(360

i
N )

(2)

Fig. 1. Representation of the map from the circular area to the
rectangle.

Secondly, for each column of the projected rectangle,
the point with the largest difference is labeled as coarse iris
boundary point. Fig.2(d, h) are illustrations. The points locate
at the top or bottom of the rectangle are often errors result
from occlusion by eyelids, eyelashes and specularities, the
error points are simply deleted from our model. That is to say
not all the boundary points on the rectangle are used. Let N1

be the number of valid points, let (xi, hi) be the coordinates
of the ith valid point on the rectangle, i = 1, 2, , N1.

Thirdly, coarse iris boundary curves are derived from the
coarse iris boundary points, which is a typical machine learn-
ing problem. To choose the machine learning model, three
requirements need to be met. Firstly, irises have a variety of
shapes such as round, oval, chestnut shaped, so the model
must be flexible enough to fit these shapes; secondly, iris
boundary is always influenced by occlusion by eyelids, eye-
lashes and specularities, which causes outliers or errors, so
the model must be robust enough to deal with these outliers;
thirdly, biometric systems have a high requirement of speed,
so the model must be time economic. According to the first
requirement, conical models are abandoned because they are
not flexible enough. According to the third requirement, non-
linear models are rejected because they are always high of
computational complexity and time-consuming. Finally, the
linear basis function model [10] is chosen. Linear basis func-
tion model can fit any shape of curve by the careful selection
of basis functions, its robustness can be adjusted by control-
ling the number of basis functions, and it is a linear model,
which makes it very fast.

(a) Iris 7-3 of IITD (b) The coarse circles

(c) Projected rectangle of circular area near pupil boundary

(d) The coarse pupil boundary points

(e) The coarse pupil boundary curve

(f) The final pupil boundary curve

(g) Projected rectangle of circular area near iris boundary

(h) The coarse iris boundary points

(i) The coarse iris boundary curve

(j) The final iris boundary curve

Fig. 2. Illustration of the processes of the proposed method.
The final segmentation result is shown in Fig.3.

The left most boundary point on the rectangle is adjacent
with the right most boundary point, thus the boundary curve
should have a period of N , which makes the trigonometric
functions (cos( 2πkN ), sin(2πkN ))(k = 1, 2, ) ideal as the basis
functions. Their periods are N

k , which makes the left most
boundary point naturally adjacent with the right most bound-
ary point. On the other hand, these basis functions contain
both odd functions and even functions, makes it capable to fit
any shape of curve.

The bigger the number of basis functions, the irregular the
boundary curves; the smaller, the smoother. Especially, when
the number of focus functions is 0, the according boundary
curves are circles. Experiments show that the model can fit
iris shape accurately and can be robust enough to eliminate
influences by occlusion in the same time, when the number of
basis functions is set to 4. The according basis functions are:
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Fig. 3. The segment results of the proposed method. The
white curves are the pupil and iris boundary curves before
RANSAC. The red curves are the pupil and iris boundary
curves after RANSAC.


ϕ0(x) = 1

ϕ1(x) = cos 2πx
N

ϕ2(x) = sin 2πx
N

ϕ3(x) = cos 4πx
N

ϕ4(x) = sin 4πx
N

(3)

ϕ0 is dummy basis function that doesnot count. Boundary
curve function in this linear basis function model is

yi = w0ϕ0(xi)+w1ϕ1(xi)+w2ϕ2(xi)+w3ϕ3(xi)+w4ϕ4(xi)
(4)

or

yi = wTΦ(xi) (5)

where i = 1, 2, ..., N1, w = (w0, ..., w4)
T , Φ = (ϕ0, ..., ϕ4)

T .
According to the linear basis function model, we have

hi = yi + ε (6)

where ε is supposed to be a zero mean Gaussian random vari-
able. We can use maximum likelihood to determine w. The
maximization of the likelihood function under a conditional
Gaussian random variable for a linear model is equivalent to
minimize the sum-of-squares error function defined by

ED(w) =
1

2

N1∑
i=1

{hi −wTΦ(xi)}2 (7)

The gradient of Eq.(7) takes the form

∇ED(w) =

N1∑
i=1

(hi −wTΦ(xi))Φ(xi)
T (8)

Setting the gradient to zero gives

N1∑
i=1

hiΦ(xi)
T −wT (

N1∑
i=1

Φ(xi)Φ(xi)
T ) = 0 (9)

Solving the equation for w we obtain

w = (φTφ)−1φT t (10)

where

φ =


ϕ0(x1) ϕ1(x1) · · · ϕ4(x1)
ϕ0(x2) ϕ1(x2) · · · ϕ4(x2)

...
...

. . .
...

ϕ0(xN1) ϕ1(xN1) · · · ϕ4(xN1)


t = [h1, h2, ..., hN1 ]

T

Fig.2(e, i) illustrate the boundary curves obtained by the
linear basis function model.

The linear basis function processes very fast, cost only
0.1ms when N is set to 360, processed on a Xeon-Core
computer (2.27GHz×4). Further more, when all the coarse
boundary points are valid, the matrix is the same for all
images, so it can be calculated offline.

4. THE FINE BOUNDARY CURVES

Linear basis function model can deal with outliers by control-
ling number of basis functions. However, linear basis function
model assumes that error in Eq.6 is a zero mean Gaussian ran-
dom variable, which doesnot hold when there are outliers. In
order to obtain more accurate iris boundary, RANSAC is pro-
posed to eliminate outliers. The RANSAC process contains
these steps.

1. The linear basis function model is applied to all the
valid boundary points whose number is N1;

2. Calculate distance from each valid boundary point
to the boundary curve obtained by the linear basis function
model;

3. Set a threshold, if a distance is larger than the threshold,
then the according boundary point is labeled as invalid;

4. Linear basis function model is applied to the new set of
valid boundary points whose number is N2.

The progress is iterative, and could iterate multiple times.
Experimental results show that just only one iteration is good
enough to refine the boundary curves. Fig.2(f, j) illustrate the
refined boundary curves.

5. EXPERIMENTAL RESULTS

Experiments for proposed algorithm are obtained on two
available iris databases: CASIA-Iris V3-Interval [11] and
IITD v1.0 [12]. The experiments are programmed in Mat-
lab R2007a, progressed on Intel Xeon-Core CPU E5520
(2.27GHz×4). Experimental results are evaluated in follow
indexes:

1. Accuracy of segmentation. The iris boundary obtained
by the proposed algorithm is compared with the actual iris
boundary. If the areas covered by the two boundaries have an
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Table 1. The inner and outer iris boundary segmentation ac-
curacy (in %) of our method and Daugman’s IDO and AC

CASIA-Iris V3-Interval IITD v1.0
IDO AC Our IDO AC Our

Outer 92.91 93.86 93.97 91.43 92.33 92.59
Inner 86.70 98.76 99.92 83.30 98.48 99.55

Table 2. The time costs (in ms) of our method and Daug-
man’s IDO and AC

CASIA-Iris V3-Interval IITD v1.0
IDO AC Our IDO AC Our

Step 1 162 162 162 142 142 142
Step 2 - 8 0.2 - 8 0.2
Step 3 - - 3.2 - - 3.2
Total 162 170 165.4 142 150 145.4

occlusion higher than 95%, then the segmentation is labeled
”accurate”; else it is labeled ”not accurate”. Table 1 shows
the segmentation accuracy of the iris inner and outer bound-
ary of our method and Daugman’s IDO and AC. From Table
1 we can see the proposed method segments iris with high
accuracy, especially the inner boundary.

2. Time cost. The proposed algorithm contains three
steps, Table 2 shows the time costs of each step of our method
and Daugman’s IDO and AC. From Table 2 we can see that
the proposed method costs only 3.4 more ms than IDO, which
is time economic, and 4.6 less ms than AC.

Roc curves of our method and Daugman’s IDO and AC
on various databases are shown in Fig.4. To compare per-
formance of different algorithms in iris segmentation module,
the same methods are applied to the other modules. Fig.4
shows that the iris recognition system based on the proposed
algorithm performs slightly better than that based on Daug-
man’s AC and much better than that based on IDO.

6. CONCLUSIONS

In this paper the iris segmentation problem is regarded as a
machine learning one which derives iris boundary curves
from coarse iris boundary points, a robust approach of
RANSAC is also proposed to remove outliers caused by oc-
clusion. Experimental results show that the proposed method
can segment noncircular iris with extremely high accuracy
and low computational cost.
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