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ABSTRACT

Discriminating computer generated graphics from photographic im-
ages is a challenging problem of digital forensics. An important ap-
proach to this issue is to explore usual image statistics. In this way,
when the statistical distributions (i.e., histograms) of some types of
residual images are established, previous works usually apply opera-
tions on these histograms or compute statistical quantities to extract
features. However, as the histograms are fundamental resources and
can present most image information, the histograms themselves can
be directly used as features and we do not need further manipula-
tions on them. Based on this consideration, we simply take several
highest histogram bins of the difference images as features to carry
out classification, and these simple histogram features work well in
terms of both detection accuracy and computational complexity. Ac-
tually, experimental results demonstrate that, with only 112 features,
the proposed method outperforms some state-of-the-art works.

Index Terms— Digital forensics, computer generated graphics,
photographic images

1. INTRODUCTION

Owing to the fast development in computer graphic technology, it
is easier to use rendering software to generate graphics. Computer
generated graphics (CGG) may be used in movie industry as fantas-
tic scenes which are hard to present in real world, while they may be
used for image forgery and even for criminal purpose. Nowadays,
CGG are so photorealistic that people can hardly distinguish them
from photographic images (PI). In this light, an automatic classifi-
cation system is highly desired. Dealing with this issue serves two
purposes. On one hand, it encourages computer graphics researchers
to improve their algorithms to imitate the physical world more real-
istically. On the other hand, if the classification system is effective
enough, it will serve as a powerful tool to reveal image forgery.

Numerous methods have been proposed to identify CGG and PI,
and they can be roughly classified into two types:

e Acquisition-process-based methods: This type of methods is
based on the differences in generation process of CGG and PI.
Notice that for PI, the generation process includes many com-
mon processing stages whatever the digital camera is, and it
leaves a unique signature in the resulting image which may
not present in CGG, since CGG are produced by a graphics
rendering pipeline which is a totally different process from
PI. For instance, motivated by the physical CGG generation
process, Ng et al. [1] introduced some geometry features to
carry out classification; based on the modelisation of camera
sensor pattern noise which is only presented in PI, Dehnie et
al. [2] extracted features from the residual images derived by
wavelet de-noising; Dirik ef al. [3] explored the traces of de-
mosaicking and chromatic aberration in PI to build features.

Corresponding author: Bin Yang, e-mail: yangbin@icst.pku.edu.cn

978-1-4577-1302-6/11/$26.00 ©2011 IEEE

o Statistical-distribution-based methods: The basic idea of this
type of methods is that, CGG and PI can be distinguished by
utilizing some usual image statistics (such as those used in
steganalysis), while the specific generation process of CGG
and PI is considered as a “black-box” and not investigated.
For instance, in wavelet domain, Lyu and Farid [4] utilized
the first four order statistics of subband coefficients and inter-
subband prediction-errors as features; also in wavelet domain,
Wang and Moulin [5] extracted features from the characteris-
tic functions of wavelet coefficient histograms; in [6], Chen
et al. considered the moment-based features which are pre-
viously introduced in blind steganalysis. Besides, the meth-
ods [7] and [8] also belong to this type.

For either CGG or PI, the generation process is evidently com-
plicated and very hard to describe by a universal model. Meanwhile,
after generated, CGG and PI may undergo many uncontrollable and
unpredictable manipulations such as usual signal processing opera-
tions, data embedding, etc. So the first approach is difficult to follow
and recent works are mainly based on the second approach. Al-
though the second approach does not model image generation pro-
cess explicitly, it performs rather well according to the experimental
results reported in [4-8]. We then focus on the second approach in
this paper to construct more reliable statistical features for identify-
ing CGG, and we show that some simple image statistics are capable
of dealing with this classification problem.

In brief, we simply compute histograms of the difference images
(i.e., the images composed of differences of adjacent pixels), then we
take some highest (in other words, the most informative) histogram
bins as features to represent image statistics to carry out classifica-
tion. Noticing that these histograms are usually Laplacian-like dis-
tributions centered at the origin, the selected bins are located around
0. In this way, with only 112 features, the proposed method provides
a superior performance to some state-of-the-art works which employ
much more features.

The rest of this paper is organized as follows. Some related
works are briefly introduced in Section 2. Then the proposed method
is detailed in Section 3, followed by the experimental results reported
in Section 4. Finally, the conclusions are drawn in the last section.

2. RELATED WORKS

The previous statistical-distribution-based methods [5-7] are briefly
introduced and discussed in this section.

In [5], features are extracted from the characteristic functions of
wavelet coefficient histograms. For each color component of RGB,
the image is decomposed into three levels by Haar wavelet trans-
form, and there are four subbands in each level: smooth, horizon-
tal, vertical and diagonal. Besides, the first-level diagonal subband
is further decomposed into four subbands. Accordingly, they have
48 subbands. For every subband, discrete Fourier transform (DFT)
is performed on its histogram to obtain the characteristic function.
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Fig. 1. Feature extraction mechanism of the previous statistical-
distribution-based methods.

Then, three features are computed using the characteristic function:
two features are inspired by the previous steganalytic method [9],
which convey information about high-frequency components; and
one new feature is devised to convey information about low- to mid-
frequency components. Finally, a 144-D feature set is built.

In [6], the moments of characteristic functions of wavelet co-
efficient histograms are taken as features. Similar to [5], for each
color component of HSV, the image is also decomposed into three
levels based on Haar wavelet transform. So there are 13 subbands
if the component image itself is considered as a subband at level 0.
In addition, the prediction-error image derived by the median edge
detector (i.e., MED) is taken into account, and the same decomposi-
tion is also applied to this image. A set of 78 subbands is obtained.
Then for every subband, the characteristic function of its histogram
is computed using DFT. Finally, the first three moments of each char-
acteristic function are extracted, resulting in a 234-D feature set.

In the recent work [7], the image is changed to a JPEG 2-D array,
which has the same size as the original image with each consecutive
and non-overlapping 8 x 8 block filled up with the corresponding ab-
solute values of quantized block DCT coefficients. Then the authors
apply the Markov process to model this JPEG 2-D array and extract
features from the transition probability matrix (TPM). More specif-
ically, the 1-D and 2-D histograms of difference image of the JPEG
2-D array are first established, then the one-step TPM is computed
using the two histograms, and finally, the elements of TPM are ex-
tracted as features. Taking the horizontal and vertical difference into
account, and generating features from Y and Cb component together,
this method has a 324-D feature set.

After the above presentation, we see that the basic feature extrac-
tion mechanism of the previous statistical-distribution-based meth-
ods can be summarized as follows (see Fig. 1). First, residual im-
ages which reflect image spatial correlations are obtained according
to a certain transform. Then the statistical distributions (i.e., his-
tograms) of residual images are established. Finally, after manipulat-
ing the histograms, the feature set is built by computing some certain
quantities. For instance, reviewing Wang and Moulin’s method [5],
each subband of wavelet decomposition can be viewed as a resid-
ual image, and features are extracted after performing DFT on the
histograms of residual images. In conclusion, the key point of these
methods is clearly the utilization of histograms of residual images,
and suitable image statistics may distinguish CGG from PI well.

3. THE PROPOSED METHOD

It is assumed and widely accepted that some statistical distributions
of CGG and PI are distinguishable. This observation provides an ap-
proach to identify CGG, where the main problem is to select and de-
scribe statistical distributions correctly. To deal with this issue, when
the histograms are established, previous methods usually apply op-
erations (e.g., DFT [5,6]) on these histograms or compute statistical
quantities (e.g., mean, variation, skewness and kurtosis [4]) to ex-
tract features. However, notice that the histograms are fundamental
resources and can present most image information, we argue that the
histograms themselves can be directly used as features and actually
we do not need further manipulations on them. Our idea is detailed
as follows.
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(c) Difference-histograms
of (a) and (b).

(d) Average difference-histograms
of 1000 CGG and 1000 PI.

Fig. 2. Examples of CGG and PI, and comparisons of histograms of
difference images. Here, the difference images are computed in R
component of RGB.

We consider the simplest residual image: the difference image in
horizontal direction. Here we remark that the difference image has
already been widely adopted in steganalysis [10,11]. For a given im-
age I, its horizontal difference image is defined as I, = I f, where
fn is the horizontal convolution kernel (1, —1). Then we compute
the normalized histogram Hp,:

{0, 4) : In(i, ) = n}
N )

Hy(n) = —255 < n < 255,
where N is the total number of pixels in [}, and § denotes the car-
dinal number of a set. Let us see Fig. 2. Examples of CGG and PI
are presented in Fig. 2(a) and 2(b), and comparison of histograms
of their difference images is shown in Fig. 2(c). According to this
comparison, we observe that the difference-histogram of CGG has a
much higher peak point with more rapid two-sided decay. Thus, for
this example, the difference-histogram has good discrimination. Ac-
tually, this practical observation is a general phenomenon. Referring
to Fig. 2(d), it shows the averages of difference-histograms for 1000
CGG and 1000 PI, and we observe the same discrimination.

Some primary experimental results are presented here. Fig. 3(a)
shows the peak point H}, (0) of difference-histogram, for 1000 CGG
(blue points) and 1000 PI (red points). Obviously, the peak point
is relatively large for CGG and thus this quantity is profitable if us-
ing it for CGG detection. In Fig. 3(b), the point (H(0), Hn(1)) is
plotted, also for 1000 CGG (blue points) and 1000 PI (red points).
From this figure, we see that in contrast to blue points, the red ones
are more compactly distributed. We then use {H(0), ..., Hn(k)}
which contains 1+ k elements as a feature set to detect CGG, where
k > 01is a preselected integer. The corresponding receiver operating
characteristic (ROC) curves are shown in Fig. 3(c). Clearly, we can
detect CGG to some extent with only one feature though the perfor-
mance is not favorable, and the detection rate increases if employing
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Fig. 3. Illustration of the effectiveness of histogram features.

more features. Moreover, the detection performance is rather good
with just six features, for instance, we can get a detection rate about
80% when the probability of false positive (percentage of PI that are
misclassified as CGG) is 20%. These experiments illustrate well that
these simple histogram features are valuable in CGG detection.

We now give the feature extraction procedure of the proposed
method (see Fig. 4 for an illustration). Notice that the horizontal
difference image only reflects the first-order image statistics in one
direction. We may simultaneously utilize difference images in other
directions and second-order statistics (i.e., the difference images of
difference images). In addition, as the difference-histogram is sym-
metric to 0, we simply take the following features in order to reduce
the feature dimension:

HQ)+ H(-1)  H(k)+ H(—k)
. . ,

H(0), (1)
where H is a given difference-histogram.

Taking into account these considerations, we extract features as
follows. First, compute the first-order and second-order difference
images: I; = I * fand I; ; = I = f; * f;, where 4,5 € {h,v,d, a}
and f; are convolution kernels in four directions (horizontal, vertical,

diagonal, anti-diagonal):
1 1 0 0 1
fh:(lvfl)afvz(71)7fd:(0 71)5.]60«: (71 O)

Notice that I; ; = I;; holds for each i,5 € {h,v,d,a}, and we
get 14 difference images in total. Then, for each difference image,
compute its histogram H and take 1 + k features according to Eq.
(1). Thus we get a feature set containing 14(1 + k) features. Finally,
we use these features to train and test.

The experimental results including performance evaluation of
our method and comparisons with state-of-the-art works will be re-
ported in the next section.

14 histograms:
Hpy(m=1,--+,14)

14 difference images:

1%f (f<KS) Hunf0), (Hrn(n}H(-n))/2 |

fn=1"“l14; n=1,...’£)/

image / S

Fig. 4. Feature extraction procedure of the proposed method, where
K S is a kernel set which contains 14 kernels.

Table 1. Performance of the proposed method measured by detec-
tion accuracy and AUC, for different parameter k.

accuracy AUC

k R [ G | B R [ G | B

0 | 799% | 78.8% | 81.8% | 0.887 | 0.878 | 0.891
1 | 88.8% | 89.0% | 87.9% | 0.944 | 0.943 | 0.935
2 1 926% | 92.8% | 91.8% | 0.970 | 0.974 | 0.960
3 |943% | 94.0% | 94.4% | 0.982 | 0.982 | 0.985
4 | 943% | 94.1% | 95.0% | 0.984 | 0.983 | 0.987
5 | 948% | 94.5% | 95.0% | 0.985 | 0.985 | 0.987
6 | 949% | 94.7% | 95.2% | 0.985 | 0.986 | 0.989
7 | 952% | 95.1% | 95.3% | 0.987 | 0.988 | 0.988
8 | 95.0% | 95.1% | 95.4% | 0.986 | 0.988 | 0.990
9 | 949% | 95.0% | 95.4% | 0.986 | 0.988 | 0.990
10 | 95.1% | 94.9% | 95.2% | 0.987 | 0.987 | 0.989
11 | 95.0% | 95.0% | 95.1% | 0.986 | 0.987 | 0.988
12 | 95.0% | 94.9% | 95.1% | 0.985 | 0.987 | 0.988
13 | 94.8% | 95.0% | 95.2% | 0.984 | 0.987 | 0.987
14 | 94.7% | 94.9% | 95.0% | 0.985 | 0.987 | 0.988
15 | 94.7% | 95.0% | 94.8% | 0.985 | 0.988 | 0.987
16 | 94.5% | 94.8% | 95.1% | 0.984 | 0.987 | 0.987
17 | 94.6% | 94.9% | 94.8% | 0.984 | 0.988 | 0.986
18 | 94.5% | 94.5% | 94.8% | 0.985 | 0.987 | 0.986
19 | 94.0% | 94.6% | 94.8% | 0.982 | 0.987 | 0.986
20 | 94.5% | 94.3% | 94.6% | 0.983 | 0.986 | 0.986

4. EXPERIMENTAL RESULTS

All the CGG and PI in our database are RGB color images down-
loaded from various internet websites. The CGG database contains
1000 images sized from 400 x 400 to 1600 x 1600 with moderate
to good visual quality. The PI database contains 1000 digital camera
images sized 1024 x 1024 with very good visual quality. These im-
ages are collected from more than 50 types of digital cameras where
the original images are in RAW or lossless JPEG format with size
from 2000 x 2000 to 4000 x 4000, and we crop a 1024 x 1024-sized
block in each selected image to form the PI database. The images
in our database consist of a variety of outdoor and indoor scenes,
including nature (e.g., flowers, trees, animals), portraits, man-made
objects (e.g., architectures), etc.

The proposed method is tested in each R, G and B component,
and we use the parameter-independent classifier FLD (Fisher linear
discriminant) to train and test. In each experiment, we choose 80%
of CGG and 80% of PI for training, and the remaining 20% for test-
ing. The procedure is repeated 10 times for 5-fold cross-validation
and the ROC curves are vertically averaged. Our method is then
evaluated by computing the detection accuracy and the area under
ROC curve (AUC), and an accuracy/AUC close to 100%/1.0 indi-
cates excellent discrimination. Tab. 1 shows the detection results
for different parameter k. According to this table, the performance
becomes better when k increases, while for k > 7, it changes a little
and tends to the same. That is to say, our method can provide the
best result with 112 features, balancing detection performance and
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Table 2. Comparisons between the proposed method and previous
works [5-7].

feature size TP TN accuracy
[5] 144 92.9% | 89.1% 91.0%
[6] 234 94.6% | 94.6% 94.6%
[7] 324 93.7% | 91.3% 92.5%
proposed (R) | 56 (k=3) | 94.9% | 93.6% 94.3%
proposed (G) | 56 (k=3) | 94.4% | 93.6% 94.0%
proposed (B) | 56 (k=3) | 94.5% | 94.3% 94.4%
proposed (R) | 112(k=7) | 95.7% | 94.7% 95.2%
proposed (G) | 112(k=T7) | 955% | 94.6% 95.1%
proposed (B) | 112(k=7) | 95.7% | 94.9% 95.3%
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Fig. 5. Comparisons of ROC curves of CGG detection between the
proposed method and previous works [5-7].

feature dimension. In addition, for fixed k, we can get very similar
classification result for each R, G and B component.

The comparisons between our method and previous works [5-7]
are presented as below. Here, we implement these algorithms our-
selves, then we train and test according to the classifier and parame-
ters mentioned in their papers on our image database:

e For [5], FLD is applied as classifier.

e For [6] and [7], support vector machine (SVM) is applied as
classifier with radial basis function (RBF) kernel. Moreover,
grid-search is used to find optimal penalty parameter and ker-
nel parameter.

The train and test procedure for these algorithms is also repeated 10
times for 5-fold cross-validation. The comparison results are shown
in Tab. 2, where TP (true positive) and TN (true negative) represent
respectively the detection rate of CGG and PI, and the accuracy is
actually the average of TP and TN. From this table, we see that our
method with 112 features outperforms these state-of-the-art works
with higher TP, TN and accuracy. Moreover, with only 56 features,
our method performs similarly to [5-7] which employ much more
features. In addition, we present the comparisons of ROC curves in
Fig. 5. We see that the proposed method is slightly better than [6],
while our improvement over [5] and [7] is significant.

Finally, we remark that the computational complexity of the pro-
posed method is rather low since the transformations such as wavelet
decomposition or DFT are not involved in feature extraction.

5. CONCLUSIONS

A novel method to identify CGG has been presented in this work,
where the features used for classification are simply the histogram
bins of first-order and second-order difference images. Compared to
state-of-the-arts works, the proposed method is superior with higher
detection accuracy, smaller feature dimension and lower computa-
tional complexity.

The tails of histograms, which are not considered in this paper,
might be helpful for CGG detection. This point will be investigated
in future. Besides, following the feature fusion idea of Sankar ef
al. [12], one of our works in progress is to combine different types
of features to further improve the detection performance. More-
over, trying different color models and applying boosting-feature-
selection are also valuable experimental tasks.
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