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ABSTRACT

The estimation of road profiles from low texture stereo images
is a problematic task because the disparity images computed
from such class of images have a large number of noisy dis-
parities. This paper presents a new method that is based on
edge maps to guide the cost aggregation process in the stereo
matching problem. Using the proposed aggregation method,
the disparity images are smooth at low texture regions, but
the boundaries of on-road objects are still preserved. The V-
disparity images computed from such reliable disparity im-
ages can clearly show the road profiles. Thereby, the road pro-
files can be straightforwardly extracted by the dynamic pro-
gramming technique. Experiments on a long and real stereo
image sequence demonstrate that the proposed method can
robustly estimate the road profiles. Furthermore, on-road ob-
jects can be detected by combining v- and u-disparity images
as well because their boundaries are preserved in the disparity
images.

Index Terms— Road Profile Estimation, Stereo Match-
ing, Dynamic Programming, Cost Aggregation

1. INTRODUCTION

Autonomous navigation is an active and useful research field,
as demonstrated by the competitions organized by DARPA
[1]. Recent researches show that the stereo-based approach
has an enormous potential for the navigation problem because
it can utilize much information contained in stereo images
and can determine the relative distance from on-road objects
to the host vehicle. In stereo-based navigation problem, road
profile estimation is a preliminary and important task because
it highly influences the accuracy of on-road object detection
in the next step.
As explained in [2], road surfaces can be represented by

a succession of parts of planes in disparity spaces. However,
because of the lack of textures in the stereo images, the dispar-
ity images contain a majority of noisy disparities. Although
there are many research works based on disparity images to
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estimate road surfaces, a robust method for low texture im-
ages is still missing.
Only reliable disparities of sparse disparity images com-

puted for high gradient pixels were used in [2, 3]. Assuming
that the stereo cameras have small roll angles, road profiles
can be detected by using Hough-Transform in v-disparity im-
ages [2]. For more robustness against noisy and outlier dis-
parities, road surfaces were estimated by RANSAC in [3]. In
order to obtain better distribution of gradients, an adaptive
thresholding method was proposed in [4].
Because only using the disparities at high gradient pixels

is unreliable for low texture images, the reliable disparities
are propagated into neighboring pixels of low texture regions
by an algorithm so-called ”Quasi-Dense” [5]. However, the
low texture problem has not been solved completely.
Dense disparity images were used in [6, 7]. In order to

deal with noisy disparities, some heuristic ways have been
proposed to select the disparities belonging to road planes.
After that, the road planes were estimated by Least-Squares
[6] and IRLS [7]. However, the robustness of those methods
seems to rely on predefined anchor points to which the road
planes are tied.
The matching of only phases of horizontal gradients was

proposed in [8]. However, relying on matching costs of single
pixels is unreliable enough for low texture images [9]. For
more robustness, the aggregation of pixel matching costs in
very wide windows was proposed in [10]. However, using the
classical aggregation method with very wide windows will
make disparity images smooth everywhere, i.e. on-road ob-
jects will disappear. Therefore, on-road objects can not be
correctly detected. Moreover, as indicated in [10], both of the
methods in [8] and [10] can not be used unless stereo cameras
have small pitch angles.
This paper proposes a new method for the aggregation of

matching costs. Using the proposed method, disparity sur-
faces are smooth at low texture regions, but the boundaries
of on-road objects are still preserved. In addition, the com-
putational complexity of the proposed method is independent
to the size aggregation windows. Because there is a large
number of reliable disparities belonging to road, road profiles
clearly appear on v-disparity images and can be detected ro-
bustly by the dynamic programming technique.

4273978-1-4244-5654-3/09/$26.00 ©2009 IEEE ICIP 2009



2. SYSTEM OVERVIEW

As shown in Fig. 1(a), input images are filtered by a horizon-
tal Sobel kernel to emphasize textures, similar to [8]. After
that, disparity images are computed by three modules: Pixel
Matcher, Cost Aggregator andWTA (Winner-Takes-All).

(a) (b)

Fig. 1. (a) Road profile extraction system. (b) Data structures
used for the proposed cost aggregation method.

Pixel Matcher computes a modified cosine distance de-
fined by Eq. 1, where�gp = [grp, ggp , gbp]T and�gq = [grq , ggq , gbq]T
are the results of Sobel filter for RGB components of pixel p
and q respectively. L1-norm replaces L2-norm in the original
cosine distance for a faster computation.
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The output of Pixel Matcher is a 3D volume of match-

ing costs denoted by cost(u,v,d); where U×V is the size of
image, D is the disparity search range, u∈[0,U-1], v∈[0,V-
1] and d∈[0,D-1]. Different from the other methods, Cost
Aggregator uses edge maps to guide the aggregation, as
explained in the next section. Its output is denoted as
costaggr(u, v, d). WTA assigns disparity dbest to pixel p(u, v)
if dbest = argmin

d
costaggr(u, v, d).

Based the output of module WTA, V-disparity image
which is formed by horizontally accumulating the image
pixels with the same disparity is computed by V-disparity
projector. Road profile is then extracted from the v-disparity
image by module Dynamic Programming (DP).

3. COST AGGREGATION

The proposed cost aggregation method is inspired by the suc-
cess of recent research works for stereo matching based on
image segmentation [11]. However, different from the seg-
mentation based methods that define a segment as a homo-
geneous region in 2D image, the proposed method defines a

Table 1. Cost aggregation guided by edge maps
(a) Add new cost on the rightmost side of the window:
1. buffer[r] = cost in[r];
2. aggr cost = buffer[a] + cost in[r];
3. if(edge[r-1] ˆ edge[r]){ scost[++sr]=cost in[r]; scount[sr]=1;}
4. else { scost[sr]+= cost in[r];scount[sr] +=1;}
5. label[r] = sr;
(b) Remove the element that the window has left:
6. if(edge[r-W] ˆ edge[r-W+1]) sl = sl +1;
7. else{ scost[sl]-= buffer[l]; scount -=1;}
8. buffer[l] = aggr cost - buffer[l];
(c) Compute the average cost for the window:
9. mid = r - (W DIV 2); seg = label[mid];
10. if((W-scount[seg]) != 0){
11. cost out[mid] = scost[seg]/scount[seg] +

alpha*(buffer[l] - scost[seg])/(W-scount[seg]);
12. } else cost out[mid] = scost[seg]/scount[seg];
13. a++; l++; r++

segment as a group of consecutive pixels on horizontal lines
or vertical columns of the edge map computed for the refer-
ence image (the left image). For example, pixels from s to
(t-1) in a line or a column of the edge map are grouped to a
segment if and only if the line or the column changes value
(0→ 1 or 1→ 0) from (s-1) to s and from (t-1) to t, and there
is no value change from s to (t-1).
The proposed method performs the aggregation for hori-

zontal lines and then for vertical columns of each U-V slice
of cost(u,v,d). Each line or column and the corresponding one
in the edge map are represented by array cost in and edge
in Fig. 1(b) respectively. Aggregated costs will be written
to cost out. Similar to [12], buffer[l]→ buffer[r-1] are used
to store elements of the current window. The accumulated
value (a summation) of those elements is saved to buffer[a].
buffer[r] is used to store the new incoming cost at cost in[r]
when the window moves to right.
A window may occupy several segments. These segments

are indexed by sl→ sr. The number of pixels in each segment
and the accumulated cost of those pixels are stored to scount
and scost respectively. Array label is used as a mapping from
pixels to the segments to which the pixels belongs. The seg-
ment that contains the middle pixel of the current window is
referred to as the mid-segment hereafter. Before processing
cost in, one initial segment is putted to scount and scost. This
initialization is done by: (1) set sl=sr=0, (2) set scost[0]= the
accumulated value of W (that is the length of windows) left
border elements, (3) set scount[0]=W, and (4) set 0 (0: initial
segment) to label forW left border elements.
The procedure to process each cost in cost in is given in

Table 1. In line (1) and (2), the proposed method saves the
new cost cost in[r] to buffer[r] and then adds this cost to the
accumulated value of the previous window. A new segment
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will be created, in line (3), if there is a value change on the
edge array at the rightmost element of the window. Other-
wise, the new cost is accumulated to the rightmost segment
identified by sr, in line (4). The mapping label is filled in line
(5). The element that the window has left on the leftmost side,
i.e buffer[l], is removed in line (8). Before that, it is removed
from the leftmost segment, in line (7), if the leftmost segment
is still occupied by the window. Otherwise, the leftmost seg-
ment is removed by increasing sl by 1.
Different from the classical moving average [12], the pro-

posed method reduces the influence of pixels that are outside
of the mid-segment by multiplying a factor alpha (≤ 1) to the
average cost of those pixels before adding this cost to the av-
erage cost of pixels inside the mid-segment, line (11).

4. ROAD PROFILE EXTRACTION

Given a disparity image, the intensity of a pixel (v, d) in a v-
disparity image is the total number of the pixels in horizontal
line v of the disparity image that have the disparity of d. V-
disparity images are normalized by dividing the value of each
pixel (v, d) by the maximum value in row v. The results are
denoted by Ivd(v, d), as shown in Fig. 2(d).
The slanted white line in Fig. 2(d) is the road profile. It is

extracted by minimizing Acc(v,d), defined by Eq. (2). Where
costvd(v, d)

def
= e−Ivd(v,d), and α(v) is the smooth factor for

pixels in horizontal line v of costvd(v, d). α(v) is selected
as 10th percentile of values in line v of costvd(v, d). The
minimum path, called pathDP , is found from the bottom to
the top horizontal line of Ivd(v, d).

Acc(v, d) = costvd(v, d)+

min

⎛
⎝
Acc(v + 1, d− 1) + α(v)

Acc(v + 1, d)
Acc(v + 1, d+ 1) + α(v)

⎞
⎠ (2)

From the bottom to the top horizontal line of a v-disparity
image, pathDP can turn to parallel to the vertical line d=0 at
d = dinf and d = dobj , where dinf is the disparity of objects
at the infinity; for verged stereo cameras, dinf �= 0. dinf
can be determined at the calibration step. dobj is the disparity
of on-road objects that occlude a large area of the road. If
there are no on-road objects then dobj ≡ dinf , as shown in
Fig. 2(c). The extracted road profile in this paper is defined as
a part of pathDP from d=dobj to d=D-1.

5. EXPERIMENTAL RESULTS

The proposed method is evaluated with a real image sequence
from [6]. Two low texture images that were also used in
[6, 10] are shown in Fig. 2(a) and Fig. 3(b). The disparity
image computed by using the classical moving average (cost
function: SAD, window size: 11×11, validation: left-right
checking) for Fig. 2(a) is shown in Fig. 2(f). Because of low

textures, almost all of disparities of road pixels are noisy.
Therefore, v-disparity images computed by methods in [2, 4]
are unreliable, as shown in Fig. 2(g-i). In contrast, the pro-
posed aggregation method (edge detector: LoG with a thresh-
old value of 0.002, window size:11×181, alpha: 0.2) can pro-
duce smooth disparity surface for the road area, as shown in
Fig. 2(e). With the proposed aggregation method, road pro-
files can appear clearly in v-disparity images, as shown in
Fig. 2(d). The red color path in Fig. 2(c) is the path discov-
ered by the dynamic programming technique.
Because stereo images in the sequence were captured

with flat road, road profiles can be estimated by least-squares
method from the extracted ones yielded by DP, as shown in
Fig. 2(b). Based on the results of the least-squares method,
pitch angles of the stereo cameras can be computed using
Eq. (10) in [2], as sketched in Fig. 3(e) for 864 stereo pairs in
the sequence.
The most important feature of the proposed aggregation

method is that the proposed method smooths disparities in
low texture regions but preserves the boundary of on-road ob-
jects. As shown in Fig. 2(e) and Fig. 3(c), disparities belong-
ing to car and electric pillars are still preserved. Thereby, on-
road objects can be detected by combining v- and u-disparity
images like [5], as shown in Fig. 3(b). In contrast, even the ef-
ficient cost function defined in Section 2 is used, the resultant
disparity image will be over-smooth, as shown in Fig. 3(d),
if it is computed by using the classical moving average with
very wide window mentioned above.

6. CONCLUSION

A new method named cost aggregation guided by edge maps
is proposed in this paper. Like the classical moving average,
its time complexity is independent to the size of aggregation
windows. Particularly, the proposed aggregation method can
smooth disparity images at low texture regions but preserve
the boundary of on-road objects. Using the proposed method,
road profiles can clearly appear in V-disparity images. They
are robustly extracted by using the dynamic programming
technique without any a priori knowledge about the ground
plane like many other methods.

7. REFERENCES

[1] “www.grandchallenge.org: Defense advanced research
projects agency (darpa),” .

[2] D. Aubert R. Labayrade and J.P. Tarel, “Real time obsta-
cle detection in stereo vision on non-flat road geometry
through v-disparity representation,” in Proc. of Intelli-
gent Vehicle Symposium. IEEE, 2002, vol. 2, pp. 646–
651.

[3] S. Se and M. Brady, “Ground plane estimation, error
analysis and applications,” in Trans. on Robotics and

4275



(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 2. (a) The left image of a stereo pair. (b) Road profiles on v-disparity plane: pathDP is in red color, green path is
obtained by the least-squares method. (c) pathDP (red color) is superimposed on the v-disparity image. (d) V-disparity image
obtained by using the proposed aggregation method. (e) Disparity image computed by the proposed method. (f) Disparity
image computed by the classical aggregation method. (g)-(i) V-disparity images computed by the adaptive threshold method
[4] with 99%, 97% and 95% of high gradient pixels respectively.

(a) (b) (c) (d) (e)

Fig. 3. UP: u-disparity image. DOWN:(a) Road profiles on v-disparity image: pathDP is in red color, green path is obtained
by the least-squares method. (b) The left image of a stereo pair and the detected car (c) Disparity image computed by using the
proposed aggregation method. (d) Disparity image computed by using classical moving average method for the same window
size used for (c). (e) pitch angles (in degree) of stereo cameras computed from 864 stereo pairs in the sequence.

Autonomous Systems. ELSEVIER, 2002, vol. 39, pp.
59–71.

[4] D. Aubert N. Soquet and D. Hautiere, “Road segmenta-
tion supervised by an extended v-disparity algorithm for
autonomous navigation,” in Proc. of Intelligent Vehicle
Symposium. IEEE, 2007, pp. 160–165.

[5] M. Perrollaz N. Hautiere, R. Labayrade and D. Aubert,
“Road scene analysis by stereovision: a robust and
quasi-dense approach,” in Proc. of ICARCV. IEEE,
2006, pp. 1–6.

[6] Michele Zanin, “Localization of ahead vehicle with on-
board stereo cemeras,” in Proc. of Image Analysis and
Processing. IEEE, 2007, pp. 111–116.

[7] Nikolay Chumerin and Marc M. Van Hulle, “Ground
plane estimation based on dense stereo disparity,” in
Proc. of Control, Automation, Robotics and Vision.
IEEE, 2006, pp. 1–6.

[8] R.I. Fedriga A. Broggi, C. Caraffi and P. Grisleri, “Ob-
stacle detection with stereo vision for off-road vehicle
navigation,” in Proc. of CVPR. IEEE, 2005, pp. 65–72.

[9] D. Scharstein and R. Szeliski, “A taxonomy and eval-
uation of dense two-frame stereo correspondence algo-
rithms,” in International Journal of Computer Vision,
2002, vol. 47(1/2/3), pp. 7–42.

[10] J. Katupitiya Z. Zhao and J. Ward, “Global correlation
based ground plane estimation using v-disparity image,”
in Proc. of Robotics and Automation. IEEE, 2007, pp.
529–534.

[11] M. Gerrits and P. Bekaert, “Local stereo matching with
segmentation-based outlier rejection,” in Proc. of Com-
puter and Robot Vision. IEEE, 2006, pp. 66–72.

[12] R. Hesser K. Muhlmann, D. Maier and R. Manner, “Cal-
culating dense disparity maps from color stereo images,
an efficient implementation,” in Proc. of Stereo and
Multi-Baseline Vision. IEEE, 2001, pp. 30–36.

4276


