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ABSTRACT

In general, image sensor noise is dominated by Poisson statis-

tics, even at high illumination level, yet most standard de-

noising procedures often assume a simpler additive Gaussian

noise, which is in fact a poor approximation. Fortunately,

Poisson noise can under some circumstances be simplified

via variance stabilizing methods, such as the Anscombe trans-

form, which is well known to statisticians, medical imaging

specialists and astronomers. However, in order to use such

a procedure effectively, the actual photon count needs to be

known and not simply an illumination intensity, which is the

main reason why such procedures are not frequently used in

the image processing community.

In this article, we propose to use Poisson distribution char-

acteristics to estimate the photon count from relative illumi-

nation data, under simple hypotheses. This allows us to use

variance-stabilizing methods on standard digital photographs.

Thanks to this, the noise becomes close to additive Gaussian

and standard filtering methods become significantly more ef-

fective. As an example we exhibit the level of improvement

that can be achieved using the bilateral filter.

Index Terms— Image sensors ; Gaussian filtering ; Bilat-

eral filter, Poisson noise model.

1. INTRODUCTION

Small consumer-level cameras exhibit many flaws leading to

poor image output. Among them are cheap and simple optics,

a small sensor due to size consideration, and lack of autofo-

cus, aperture control or motion compensation that can lead to

fuzzy images. In addition, these camera do not generally give

access to the raw image data, contrarily to more sophisticated

equipment. Furthermore, these camera need to be operated

simply and so must process the captured image data quickly

and effectively in order to present the user with a usable image

with a minimum of intervention. In this paper we shall focus

on the denoising aspect of this processing procedure. This is

a critical as it will condition most of the rest, including colour

demosaicing, artifact removal, and coding.

Most standard denoising procedures assume an additive

Gaussian noise pattern and optimize their parameters under

this hypothesis. However photography noise is dominated by

Poisson photon noise under most conditions, even high illu-

mination. This results in noise variance that varies propor-

tionally to light intensity. Poisson noise is neither additive

nor multiplicative and so must be dealt with using dedicated

procedures.

In the remainder, we present a simplified noise model suit-

able for digital cameras. We introduce a variance-stabilizing

pixel transform that simplify Poisson noise into approximate

Gaussian additive noise with known variance. We show that

these transforms are not directly applicable to simple inten-

sity images, but require photon counts at each pixel location

to operate. We propose a procedure allowing to estimate such

counts from relative intensity and show that it does perform

well. Using this procedure, we propose an improvement on

the bilateral filter [1] that is shown to perform well on pho-

tography images, and that is efficient enough to run on small,

embedded CPUs.

2. NOISE MODEL

Many sources are cause of noise generation in CCD and

CMOS sensors. These can be categorized in four main factors

[2]: (1) The photon shot noise – associated with a random

Poisson process governing the number of incident photons

reaching a photosite; (2) the photon response non uniformity

– caused by small sensitivity differences between photosites;

(3) the dark current noise – produced by minority carriers

thermically generated in the sensor well, also associated with

a random Poisson process ; and (4) the read-out noise –

resulting from thermal noise cause by MOSFET amplifiers.

A sensor noise model complete with respect to these fac-

tors is proposed in [2]. According to this model, photon shot

noise has, in consumer photography illumination conditions,

the most important influence on the output image. We con-

sider only this noise in our model. We simulated sensor aqui-

sition via a regionalized cumulative spatial Poisson point pro-

cess [3] using scene images as probability distribution func-
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tions, similar to Monte-Carlo process. As scene images we

used the Kodak PhotoCD database, extracted at the 256x384

resolution. In Fig. 1, we exhibit some of the characteristics of

(a) (b) (c) (d) (e)

Fig. 1. Differences between Gaussian and Poisson noise. (a)

Example clean image. (b) Gaussian noise, PSNR=33dB. (c)

11 × 11 sliding-window variance of the Gaussian noise. (d)

Poisson Noise, PSNR=33dB, (d) 11×11 sliding window vari-

ance of the Poisson noise. Observe the correlation between

(a) and (e)

Poisson noise, by comparing it to a Gaussian noise of iden-

tical intensity. Figure 1(a) is a small subset of the image,

Fig. 1(b) is a picture of an additive Gaussian noise of vari-

ance σ = 5.7 that would result in a PSNR of 33dB. We run

a sliding window variance filter of size 11 × 11 on that im-

age, yielding an estimation of the variance of the noise at each

location (Fig. 1(c)). There is no evident correlation with the

variance of the noise and image data. Conversely, Fig 1(d)

shows the Poisson noise resulting from a Monte-Carlo sim-

ulation from image (a), resulting in the same PSNR. We ob-

serve clear correlation of the variance with image intensity

(Fig. 1(e)). Poisson noise is not stationary and hence neither

additive nor multiplicative. In the next section, we introduce

transforms to simplify Poisson noise.

3. VARIANCE-STABILIZING TRANSFORMS

In spite of Poisson noise being more complex than Gaussian

noise, it is still amenable to processing, due to its statistics.

Let P be a random, Poisson-distributed variable. We have

the fundamental well-known result

E(P ) = Var(P ), (1)

that is, the variance Var(P ) equal its average or expectancy

E(P ). We can find many instances of P in the physical world,

such as radiation detection events in a Geiger counter, number

of failing lighting bulbs in a building, or, to a good approxi-

mation, the number of photons falling on a photosite as the

result of illumination.

Anscombe [4] proposed a simple transformation to regu-

larize the variance of P :

A : P −→ 2

√
P +

3
8
. (2)

Under that transformation A is now a random variable

with expectancy 2
√

E(P ) and constant variance, i.e: A ≈
2
√

E(P ) + ε, with ε a new random variable with Gaussian

statistics and a fixed variance of 1.

This is extremely useful for image data, assuming the

pixel values can be assimilated to photon counts, each pixel

can then be assimilated to a Poisson variable. The pixelwise

Anscombe transformation on this data yields a new image

with approximately Gaussian additive noise, with known

noise variance. The noise become stationary and much easier

to filter. However, as we shall see in the next section, we

cannot readily equate pixel values with photon counts.

4. PHOTON COUNT ESTIMATION

In digital cameras, recorded photons are transformed into

pixel values through several processing, one of which being

the automated gain control. Here we assume that the quantum

efficiency of the image capture device is constant, and that its

output is linear with illumination.

4.1. Automatic gain control

In a digital imaging system, an automatic gain control (AGC)

is necessary to capture images in varying light conditions in

order for images to present a usable palette. Indeed natural il-

lumination conditions vary far more than most image formats

can accommodate. AGC works by adjusting the average in-

tensity of the output signal (see Fig. 2). Assuming access to

the gain factor and knowing the sensor resolution, it would be

possible to deduce the number of photons that have reached

the sensor and then estimate the noise level. However, this

information is not usually available to photographers, even

using a RAW format.

Fig. 2. Digital conversion of a photon flow by a camera sen-

sor. AGC adjusts the average image output intensity

4.2. Photons density from image statistics

In the presence of gain manipulation only, we expect the noise

variance to be proportional to average pixels values in near-

constant regions, due to its Poisson characteristics. Let I be

the image before AGC, and J the adjusted image after AGC

(i.e. our data). Assuming γ to be the gain factor, we can write:

J = γ × I (3)

Considering a Poisson distribution process, we can assume

the following relation where T−(I) represents texture-free ar-

eas in the image I .

E(T−[I]) = Var[T−[I]] (4)

Using elementary substitutions [5] the gain is expressed:

γ =
E[T−[J ]]

Var[T−[J ]]
(5)
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The image mean E[J ] and variance Var[J ] can be simultane-

ously calculated at each point in I by using a sliding-window

algorithm. We seek to establish a correlation between all E[J ]
and Var[J ] at each point where T− is non-zero. Since mean

and variance are expected to be proportional, a robust linear,

intercept-free regression can be performed, the slope coeffi-

cient can then be interpreted as the gain factor γ transforming

photon numbers to recorded pixel values.

4.3. Texture-free areas of the image

It is difficult to estimate noise variance in textured area of the

image. We can detect texture-free areas of the image using

the following formula

T−[J ] = εw [∇[Gσ � J ] > ϑ] , (6)

where J is the image, Gσ a Gaussian convolution of variance

σ, εw a morphological erosion using a square window of size

w × w as structuring element. ϑ is an intensity parameter. In

our experiments on 8-bit images, we chose σ = 2, ϑ = 2 and

w = 11.

For efficiency and to reduce the influence of correlation

between neighboring pixels, we sample the T−(J) regions

with 103–105 pixels. At each of these points x we estimate

the image average E[J ](x) and the noise variance by Var[J −
Gσ � J ], in order to eliminate small intensity variations, both

via a sliding window algorithm. We finally estimate the total

number of photons Φ̄ with the following formula:

Φ̄[J ] =
nbpix[J ]E[J ]

γ
=

∑
(x,y)∈I J(x, y)

γ
, (7)

where nbpix[J ] is the total number of pixels in J .

4.4. Experiments and results

We simulated sensor acquisitions of 104 to 109 photons and

AGC followed by quantization via a Monte-Carlo process,

corresponding to a photon density per pixel varying from 1
to 105, or a PSNR ranging from 28 to 46 dB, i.e from an ex-

tremely noisy to a very clean image, and then estimated the

photon count via our method. The excellent correlation be-

tween simulated and estimated photons is shown on the log-

log plot of Fig. 3 (R2 = 0.996). We now have a reliable way

to estimate photon numbers in photographs. We can now pro-

pose a denoising algorithm taking advantage of the variance-

stabilizing transform.

5. ALGORITHM

Any denoising algorithm assuming Gaussian noise should

benefit from variance-stabilisation. As illustration, we use

the bilateral filter.
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Fig. 3. Correlation between simulated and estimated photon

numbers. Note that the slope of the correlation is 1.

5.1. Bilateral filtering

The bilateral filter replaces a pixel value in an image by a

weighted mean of its neighbors considering both their ge-

ometric closeness and photometric similarities [6, 1].The

Gaussian bilateral filter is defined as follows:

v(x) =
1

C(x)

∑
y∈β

exp
− |x − y|2

ρ2
exp−|u(y) − u(x)|2

h2
u(y)

(8)

Where β represents a w × w sliding window, y an element

of β, and x is the centered pixel in the sliding window. u(x)
is the intensity of the pixel at the x position in the original

image, v(x) is the filtered pixel value at position x, ρ and h
are respectively the standard deviation of the Gaussian distri-

bution of the geometrical and the intensity weight. The filter

behavior depends highly on these parameters setting. Param-

eter ρ should be chosen considering the size of window, e.g

ρ = w/4. Parameter h must chosen considering the level

of filtering needed for the application. Indeed, the higher the

standard deviation, the more the filter behaves like a low-pass

Gaussian convolution. An illustration of the influence of h
is shown on Fig. 4. The parameter h is related to noise vari-

(a) h=0 (b) h=10 (c) h=20 (d) h=40

Fig. 4. Bilateral filtering using a 5x5 window and variable h

ance, and is therefore particularly difficult to estimate in the

presence of Poisson noise [5, 7]. Conversely, with a noise

variance stabilized to a value of 1, the h parameter does not

need to be optimized at all.
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5.2. Variance stabilization and algorithm

The algorithm is as follows: (1) Estimate photon density

and gain control parameter γ as per section 4 ; (2) Pixelwise

multiply by inverse gain control 1/γ ; (3) Apply pixelwise

Anscombe transformation A = 2
√

I + 3/8 ; (4) Apply bi-

lateral filter with optimized fixed h parameter; (5) Apply

pixelwise inverse Anscombe transformation ; (6) Pixelwise

multiply by gain control γ. The result is a filtered image with

the same dynamic range as the input image.

6. RESULTS AND COMPARISONS

Figure 5 shows a filtering result on a small subsample. We

(a) (b)

Fig. 5. Result of bilateral filtering with the Anscombe trans-

formation. (a) noisy image, PSNR=31.5dB, (b) filtered im-

age, PSNR=34.8dB

ran this stabilized-variance filter with a variety of images cor-

responding to photon density ranging from 102 to 105, with

fixed parameters, namely w = 7, h = 2.5. For comparison,

we ran the unmodified bilateral on the same data, but in or-

der to achieve similar results, we optimized h for each image

by parameter grid search. The result is on Fig. 6. We ob-

serve that the fixed-parameter Anscombe+bilateral performs

as well or better as a hand-optimized normal bilateral. In that

graph we also showed the PSNR of the unfiltered image for

comparison, and the result of a fixed-h-value bilateral filter.

We further observe that a fixed-h bilateral performs poorly

far from its optimal parameter.

7. CONCLUSION

In this paper, we have proposed a methodology for estimating

the photon density in digital photographs. This allowed us

to use a variance-stabilisation operator to transform the Pois-

son noise associated with photographs into a Gaussian addi-

tive noise with fixed variance = 1. This finally allowed us

to effectively process images featuring various noise inten-

sities with a fixed-parameters bilateral filter. The end result

is a fast and flexible filter that performs as well or better as

the normal bilateral but without the need to finely tune its h
parameter, which is tedious, error prone, and hard to auto-

mate. This makes this new filter suitable for entirely auto-
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Fig. 6. Comparison of fixed-parameters Anscombe+bilateral

(continuous line) filter vs. hand-optimised standard bilateral

(dots). The former is always as good or better.

mated filtering tasks, e.g. in consumer-level digital photogra-

phy equipments.
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