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ABSTRACT

One of the main challenges of human behavior analysis is

the high dimensionality of the representation space. In shape

representation, however, a specific human behavior may nat-

urally be described by a 1D path which lies in shape space.

According to Whitney Embedding Theorem, such a 1D man-

ifold may be embedded in ℝ
3. Motivated by the potential

of reducing the dimensionality of behavior representation, we

construct an embedding to map the path of evolution of the

silhouette in shape space to a representational curve in ℝ
3.

In contrast to other behavioral embedding, where each point

of the path in shape space is projected to lower dimension,

we embed the homotopy function of the whole path to be a

planar curve function. The proposed embedding utilizes sam-

pling theory to provide computational efficiency and simple

reconstruction from the embedding space. Upon validating

such a representation, we proceed to model different activi-

ties by an AR model of the representative curve. Experiments

are provided to illustrate our technique and to demonstrate its

viability.

Index Terms— embedding, homotopy, curve, behavior

modeling, auto regression

1. INTRODUCTION

Human behavior recognition is a very important problem in

many vision based applications like, human identification,

video surveillance, video content indexing. In recognition

problems, the geometry of the representational space is cru-

cial to determining a distance measure for subsequent classi-

fication applications. In this paper, we focus on constructing a

lower dimensional behavior representation that is generically

more amenable to statistical analysis.

For representational purposes, research in behavior anal-

ysis has described any activity as a flow of interesting points

or as a sub-volume in the spatio-temporal intensity volume

[1] [6] [7]. Many parametric template-based representations

have been proposed including, stick figure, 2D polygons and

volumetric models. The main challenge of many of these

representations is the computational burden of parameter es-

timation they entail in a high dimensional space. More re-

cently, the shape dynamic representation of human behavior

was shown to have better performance in human identification

[8] [2] [5]. In shape space, the human motion in video may

be viewed as a path connecting a starting human silhouette

and an ending human silhouette. The advantage of shape-

based representation is the existing preponderance of results

on shape analysis which can naturally be applied to behav-

ioral modeling and analysis. In [5], for example, the distance

of two behaviors is equivalent to a DTW(dynamic time wrap-

ping) distance between two paths on the shape sphere. In the

same paper, the authors also show that the tangent space of

shape sphere provides a valid framework for AR modeling of

human behavior.

The major limitation of the above behavior representation

is its high dimensionality. To overcome the so-called curse

of dimensionality, many dimension reduction techniques [10]

[9] have been advocated for behavioral data to yield a non-

parametric representation in lower dimension.

In this paper, we combine dimension reduction and shape

dynamics to achieve a plane curve representation of the be-

havior data. In the preprocessing of raw data, we assume a

perfect segmentation of human silhouettes from the raw video

data. The shape path is obtained by the silhouettes sequence

on Kendall shape manifold. From the shape sequence ,a cor-

responding homotopy function describing the path in shape

space is first constructed. To reduce the dimension of the

homotopy function, we next propose an embedding by sam-

pling the high dimensional function with the guidance of a 1D

curve in its coordinate domain. The 1D curve is generated in

adaption to the geometry of the homotopy, using the Nyquist

frequency. Finally, with the proposed embedding, the shape

space homotopy function is mapped to a plane curve function.

In contrast to the shape sequence representation in [5], we

view the whole sequence as a unit which is described by a ho-

motopy function. Consequently, our embedding is a mapping

between two functional spaces, which is different from the

current embedding technique in shape based human behavior

analysis. For example, in [10] [9] the embedding separately

maps every high dimensional point representing a shape or

silhouette to a lower dimensional point.

Since our embedding is constructed in a sampling frame

work, the computation of mapping and inverse mapping ex-

ploits the FFT algorithm effectively. In comparison with other

lower dimensional representations, the proposed representa-
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tion admits a simpler and more effective projection and re-

construction. In addition, according to Frenet theorem, the

resulting plane curve is uniquely defined by curvature, which

is of much lower dimension description than the path in high

dimension shape space. Moreover, our representation is also

more convenient for statistical analysis. For example, a 𝑝th

order AR model for shape sequence have 𝑝 parameters, each

of which is𝑁 ×𝑁 matrix (𝑁 is the number of sample points

on each shape). Our representation, on the other hand, will

require 𝑝 scalar parameters for an AR model of the same or-

der.

The rest of the paper is organized as follows: In Section

2, we derive a curve representation of human behavior as a

dimension reduction of the behavior path in shape space; in

Section 3, in combination with its AR modelling, the pro-

posed representation is validated in a behavioral recognition

problem. In Section 4, we provide some concluding remarks

theoretically justifying the overall approach, along with a nu-

merical illustration and substantiation.

2. CURVE REPRESENTATION OF HUMAN
BEHAVIOR

In this section, we focus on how to construct an embedding

that maps a homotopy function of a path in shape space (as

shown in figure 1) to a plane curve function. Firstly, we con-

struct a unique coordinate expression for the homotopy in

shape space, as shown in figure 2. In the coordinate space

(domain) of the homotopy function, a curve is generated ac-

cording to Nyquist sampling frequency. Using this generated

curve in the coordinate space, the function is sampled to be a

plane curve. In figure 3, we give a spatial visualization of the

sampling.

Fig. 1. the shape sequence extracted from video

2.1. Coordinate Expression of Path in Shape Space

We define a shape as 𝑓 : 𝑆1 → ℝ
2. Let the shape manifold

be 𝑀 . ∀𝑓1, 𝑓2 ∈ 𝑀 , the path connecting 𝑓1, 𝑓2 is described

by the homotopy𝐻

𝐻 : (𝑠, 𝑡) ∈ 𝑆1 × 𝐼 → (𝑥, 𝑦) ∈ ℜ2,where 𝑡 ∈ [0, 𝑇 ]

with,

𝐻(⋅, 0) = 𝑓1, 𝐻(⋅, 𝑇 ) = 𝑓2, 𝐻(𝑠+ 2𝑛𝜋, ⋅) = 𝐻(𝑠, ⋅)

In practice, however, the coordinate expression of𝐻 is neither

known nor accessible. It is because, for a given sequence

of human silhouettes extracted from a video sequence, there

exists a set of equivalent coordinate expressions with different

choices of initial points as shown below,

{𝐻(𝑠+Δ𝑠(𝑡), 𝑡)}Δ𝑠(𝑡),where ∀𝑡,Δ𝑠(𝑡) ∈ [0, 2𝜋] (1)

In addition to not having a unique expression, another prob-

lem is that some choice of Δ𝑠(𝑡) may yield a highly discon-

tinuous𝐻 . Any singularity will adversely affect our sampling

of 𝐻 which we will discuss in detail in the next section. In

order to have a unique smooth coordinate representation for

a certain shape sequence, we align shapes in different frames

by optimizing the smoothness of 𝐻 as follows:

To analyze the real data, we consider the time sampling

of video camera. Let the time sampling rate of video camera

be 𝑟𝑡, the down sampled version of 𝐻 is noted as 𝐻(𝑠, 𝑛𝑟𝑡),
where 𝑛 ∈ [0, ⌊ 𝑇

𝑟𝑡
⌋]. The shift operator Δ𝑠(𝑡) in equation 1 is

written as,

Δ𝑠(𝑛𝑟𝑡) = 𝑑𝑠(𝑛𝑟𝑡) + 𝑐

where 𝑐 is a constant offset, 𝑑𝑠(0) = 0. Clearly, 𝑐 deter-

mine the initial point at the very first frame. According to 𝑐,
function 𝑑𝑠(𝑛𝑟𝑡) describes the initial point positions of the

other frames in terms of the relative difference. The reason

to write Δ𝑠(𝑛𝑟𝑡) in such form is that the constant 𝑐 does not

affect the smoothness of 𝐻 . So we first estimate 𝑑𝑠(𝑛𝑟𝑡) by

smoothness constraint on𝐻 for an fixed 𝑐 . Then based on es-

timation of 𝑑𝑠(𝑛𝑟𝑡), 𝑐 is determined by the geometric feature

of𝐻(𝑠+ 𝑑𝑠(𝑛𝑟𝑡) + 𝑐, 𝑡)∣𝑛=0.

∙ Step 1: For arbitrary 𝑐, ∀𝑛 > 0, 𝑑𝑠(𝑛) is determined

according to,

𝑑𝑠(𝑛) = arg𝑚𝑖𝑛𝑑𝑠(𝑛𝑟𝑡) ∥ 𝐻(𝑠+ 𝑑𝑠(𝑛𝑟𝑡) + 𝑐, 𝑛𝑟𝑡)−

𝐻(𝑠+ 𝑑𝑠((𝑛− 1)𝑟𝑡) + 𝑐, (𝑛− 1)𝑟𝑡) ∥𝐿2

so that for a given constant 𝑐, 𝑑𝑠(𝑛𝑟𝑡) is sequentially

estimated for 𝑛 = 1, 2, 3...

∙ Step 2: 𝑐 is determined as,

𝑐 = arg𝑚𝑖𝑛𝑐
∑
𝑛

(𝐻(𝑑𝑠(𝑛𝑟𝑡) + 𝑐, 𝑛𝑟𝑡)−

𝐻(𝑑𝑠((𝑛− 1)𝑟𝑡) + 𝑐, (𝑛− 1)𝑟𝑡))
2

with a resulting coordinate expression for 𝐻 chosen to

be 𝐻(𝑠+Δ𝑠(𝑛𝑟𝑡), 𝑛𝑟𝑡),Δ𝑠(𝑛𝑟𝑡) = 𝑑𝑠(𝑛𝑟𝑡) + 𝑐.

In the remainder of this paper, all the 𝐻 functions used

throughout, should be perceived as the result of the above

optimization algorithm.
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2.2. Dimension Reduction

In this section, we generate a curve (𝑠, 𝑠𝑘) in the coordinate

space (s,t) of 𝐻 . Then by sampling 𝐻 along (𝑠, 𝑠𝑘) with the

proper parameter 𝑘, a high dimensional homotopy function𝐻
is mapped to a plane curve function ℎ(𝑠) defined as:

ℎ : 𝐼 → ℜ2

ℎ(𝑠) = (𝑥(𝑠, 𝑠𝑘), 𝑦(𝑠, 𝑠𝑘))

To ease the visualization of the vector valued 2D homotopy

function,𝐻 is visualized as a graph in ℝ
3: (𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡), 𝑡) ∈

ℜ3. Similarly, ℎ is visualized as (𝑥(𝑠, 𝑠𝑘), 𝑦(𝑠, 𝑠𝑘), 𝑠𝑘) ∈
ℝ

3.

Initial point at different frame

Fig. 2. Coordinate expression of Homotopy function, 𝐻 is

visualized as a mapping (𝑠, 𝑡) ∈ ℜ2 → (𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡), 𝑡) ∈
ℜ3. The initial point of each shape in different frames is de-

termined using the optimization algorithm in Section 2.1

The parameter 𝑘 of the proposed embedding is determined

by the spectral characteristics of 𝐻 . Let 𝐻̂ be the Fourier

Transform of 𝐻 over 𝑡.

𝐻̂(𝑠, 𝜔) =

∫
𝐼

𝐻(𝑠, 𝑡)𝑒𝑗𝜔𝑡𝑑𝑡

Then the Nyquist frequency 𝑁𝐹 (𝑠) of 𝐻 for different 𝑠 is

computed as follows,

𝑁𝐹 (𝑠) = inf{𝜔 :
∥ ∫ +𝜔

−𝜔
𝐻̂(𝑠, 𝜔)𝑑𝜔∥

∥ ∫ +∞
−∞ 𝐻̂(𝑠, 𝜔)𝑑𝜔∥

≥ 𝜂}

From𝑁𝐹 (𝑠) the parameter 𝑘 for curve (𝑠, 𝑠𝑘) is determined,

𝑘 =
1

max𝑁𝐹 (𝑠)

The form of ℎ is then defined as a sampling of 𝐻 along

(𝑠, 𝑠𝑘),

ℎ(𝑠) = (𝐻(𝑠, 𝑠𝑘), 𝑠 ∈ [0, ⌊ 𝑇
2𝜋𝑘

⌋]

Fig. 3. sampling on 𝐻(𝑠, 𝑡) with curve (𝑠, 𝑠𝑘) ∈ (𝑠, 𝑡)

In a sampling framework, there exists a natural inverse

mapping from ℎ to 𝐻 as up sampling. To reconstruct the 2D

function𝐻 from the 1D dimension function ℎ, we first rewrite

ℎ as a 2D function ℎ(𝑠+ 2𝜋𝑛). In fact, we have

ℎ(𝑠+ 2𝜋𝑛) = 𝐻(𝑠, 𝑠𝑘 + 2𝜋𝑛𝑘) (2)

Then for a fixed 𝑠, 𝐻(𝑠, 𝑡) can be reconstructed by up sam-

pling ℎ(𝑠+ 2𝜋𝑛) as shown below,

𝐻̂(𝑠, 𝜔) =

{ ∑
ℎ(𝑠+ 2𝜋𝑛)𝑒𝑗(𝜔2𝜋𝑘)𝑛−𝜙(𝑠), 𝜔 ∈ [− 1

𝑘 ,
1
𝑘 ];

0, else.

where, 𝜙(𝑠) = (𝜔2𝜋𝑘) ⋅ 𝑠𝑘

𝐻(𝑠, 𝑡) =

∫
𝐻̂(𝑠, 𝜔)𝑒𝑗𝜔𝑡𝑑𝜔

Note that the phase correction 𝜙(𝑠) is a result of spatially

shifting𝐻(𝑠, 𝑠𝑘 + 2𝜋𝑛𝑘) shown in Equation 2.

3. AR MODEL FOR THE EMBEDDING CURVE

In this section, the representative curve is modeled by an AR

model for behavior recognition. In our experiment, we use

the human behavior database provided by Irani’s group as ap-

peared in [2]. In figure 4, we illustrate three human behavior

image sequences from the database. Based on the proposed

behavior representation, the comparison of two behaviors is

reduced to that of two plane curves. Since each of these is

uniquely identified by its curvature function 𝑘 up to rigid mo-

tion (translation, rotation and reflection), we proceed to con-

struct an AR(p) model on the curvature 𝑘 as,

𝑘(𝑡) = 𝑎1𝑘(𝑡− 1) + 𝑎2𝑘(𝑡− 2) + ⋅ ⋅ ⋅+ 𝑎𝑝𝑘(𝑡− 𝑝) + 𝜔(𝑡)

The parameter 𝑎𝑖, 𝑖 ∈ [1, 𝑝] is estimated by standard Yule-

Walker equations. Let vector 𝐴 = (𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑝) and

𝐴1, 𝐴2 be the parameter vector of two behaviors. Then the

distance between two behaviors is defined as the 𝐿2 distance

between 𝐴1 and 𝐴2 in a vector space.

𝐷(𝐴1, 𝐴2) = ∥𝐴1 −𝐴2∥𝐿2
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Fig. 4. Example of image sequences for behavior:

run,side,skip

run walk side jump pjump jack wave1

run
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jump

pjump
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wave1

run walk side jump pjump jack wave1 wave2
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Fig. 5. (a) Distance matrix computed with AR(30) model. (b)

Probability(estimate=category B ∣ input=category A),using

the nearest neighborhood rule according to the distance ma-

trix shown in (a)

In figure 5, we show the distance matrix of 8 categories of be-

haviors. Each category comprises 9 observations for 9 differ-

ent people. The AR model order is set to be 𝑝 = 30. Based on

the distance matrix shown in figure 5(𝑎), we perform a classi-

fication similar to the ”leave-one-out” experiment in [2]. For

a certain category of behavior 𝐴, we calculate probability of

𝐴 being classified to category 𝐵, denoted by 𝑃 (𝐵∣𝐴),using

the nearest neighborhood classifier. In figure 5 (𝑏), the result

is shown as a matrix where 𝐴 is a row index and 𝐵 is the

column index.

4. CONCLUSION

We have proposed a lower dimensional representation of hu-

man behavior as a plane curve function to greatly simplify the

comparison of two behaviors. Analytically, we show that such

a curve representation is the result of an embedding of a path

in the high dimensional shape space. In addition, we provide

an explicit reconstruction from the representative plane curve

to the original shape path. The experiment results of behavior

recognition illustrate that our representation captures well the

features of human behavior.
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