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ABSTRACT

Accurate extraction of lesion borders is a crucial step in
analysing dermoscopic skin lesion images. In this paper we
present an effective approach to extracting lesion areas by
combining an iterative segmentation algorithm with a pre-
processing step that enhances colour information and image
contrast. Following the pre-processing, analysis of the image
background is conducted by iterative measurements based on
median and standard deviation of non-lesion pixels, which in
turn facilitates automatic and recurring noise reduction and
enhancement. The algorithm does not depend on the use of
rigid threshold values as an optimal thresholding algorithm
is used to determine the optimal threshold iteratively. Ex-
tensive experimental evaluation is carried out on a dataset of
90 dermoscopy images with known ground truths obtained
from three expert dermatologists. The results show that our
approach is capable of providing good segmentation perfor-
mance and that the colour enhancement step is indeed crucial
as demonstrated by comparison with results obtained from
the original RGB images.

Index Terms— medical imaging, skin cancer, dermoscopy,
image segmentation, colour normalisation, contrast enhance-
ment

1. INTRODUCTION

Malignant melanoma, the most deadly form of skin cancer, is
one of the most rapidly increasing cancers in the world, with
an estimated incidence of 62,480 and an estimated total of
8,420 deaths in the United States in 2008 alone [1]. Early di-
agnosis is particularly important since melanoma can be cured
with a simple excision if detected early.
Dermoscopy has become one of the most important tools

in the diagnosis of melanoma and other pigmented skin le-
sions. This non-invasive skin imaging technique involves
optical magnification, which makes subsurface structures
more easily visible when compared to conventional clinical
images [2]. This in turn reduces screening errors and provides

greater differentiation between difficult lesions such as pig-
mented Spitz nevi and small, clinically equivocal lesions [3].
However, it has also been demonstrated that dermoscopy may
actually lower the diagnostic accuracy in the hands of inex-
perienced dermatologists [4]. Therefore, in order to minimise
the diagnostic errors that result from the difficulty and sub-
jectivity of visual interpretation, computerised image analysis
techniques are highly sought after [5].
Automated border detection is often the first step in the

automated analysis of dermoscopy images [6] and is crucial
for two main reasons. First, the border structure provides im-
portant information for accurate diagnosis, as many clinical
features, such as asymmetry, border irregularity, and abrupt
border cutoff, are calculated directly from the border. Sec-
ond, the extraction of other important clinical features such
as atypical pigment networks, globules, and blue-white areas,
critically depends on the accuracy of border detection.
Automated border detection is a challenging task since

dermoscopy images often suffer from low contrast between
the lesion and the surrounding skin. In addition, different im-
ages or even the same image but under different lighting con-
ditions will lead to different image colours which can lead to
reduced segmentation performance. In this paper we address
these issues. We first pre-process the images using a colour
normalisation technique [7] that both removes colour varia-
tions and enhances the contrast of the images. The processed
images are then segmented using a technique that iteratively
analyses the image background and derives an optimal thresh-
old for segmentation. Results on a large set of dermoscopy
lesion images confirm that our approach achieves good seg-
mentation performance as judged based on manual borders
obtained from three expert dermatologist. Our results also
demonstrate that the colour normalisation step is indeed cru-
cial in providing accurate segmentation.
The rest of the paper is organised as follows: In Section 2

we describe the colour normalisation technique that we em-
ploy as a pre-processing step. Section 3 details our iterative
segmentation algorithm while experimental results are pre-
sented in Section 4. Section 5 concludes the paper.
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2. COLOUR NORMALISATION AND CONTRAST
ENHANCEMENT

In our approach we consider the problems of poor contrast
and lack of colour calibration which are often encountered
when analysing dermoscopy images. Different illumination
or different devices will lead to different image colours [8] of
the same lesion and hence to difficulties in the segmentation
stage. Similarly, low contrast makes accurate border detection
difficult [9]. We therefore address these issue by applying
a colour normalisation technique, namely Automatic Color
Equalization (ACE) [7], as a pre-processing step.
ACE colour normalisation is based on a model that is

designed to merge two popular normalisation techniques,
namely Grayworld [10] and MaxRGB [11] normalisation.
Local adjustment is performed by considering the colour
spatial distribution in the image.
ACE consists of two main stages: chromatic/spatial ad-

justment and dynamic tone reproduction scaling. The chro-
matic/spatial adjustment stage is the part where the actual
colour normalisation is performed and the image contrast en-
hanced, while the second stage is responsible for accurate
tone mapping and lightness constancy.
In detail, in the chromatic/spatial adjustment stage an in-

termediate image M is generated from an input image I ac-
cording to

Mi(p) =
∑

j,j �=q

r(Ii(p)− Ii(j))

d(p, q)
, i = R,G,B (1)

where Ii(p) − Ii(j) implements a lateral inhibition mecha-
nism, d(p, q) is the distance (in our experiments Euclidean
distance) between pixel locations p and q and balances local
and global filtering effects. q can be chosen to include the
whole image or just a subset of it (we use the whole image).
r(.) is a function that accounts for the relative lightness of a
pixel and was chosen to be a sloped saturation function with
a slope of 5.
In the dynamic tone reproduction stage, the pixel val-

ues of the intermediate image M are transferred to generate
the output image O. Various possibilities for this mapping
are possible, and in our experiments we adopt a combined
MaxRGB/Grayworld scaling that leads to

Oi(p) = 127.5 + siMi(p), i = R,G,B (2)

where si is the slope of the segment

[(minpMi(p), 0), (maxpMi(p), 255)]

.
The effect of the employed colour normalisation is shown

on an example in Figure 1 which displays a typical lesion
image before and after the enhancement. Clearly, the pro-
cessed version has a much better defined contrast which in
turn should aid in deriving a better border detection.

Fig. 1. Sample original lesion image (left) and the same im-
age after colour normalisation (right).

3. ITERATIVE SKIN LESION SEGMENTATION

Two criteria are considered in the design of our proposed seg-
mentation method: (1) an accurate search of the optimal le-
sion border can be achieved by analysing the whole image and
consequently the true lesion border is also retrieved; approx-
imation of the lesion border within the refined regions and
curve fitting approaches are not adopted, (2) input parameters
are mostly image dependent and have to be adjusted based on
the properties of the class of images used in the segmentation
method.
First, we apply a simple noise suppression method which

aims to reduce artefacts such as hair that are often present in
dermoscopic images. To do so, we subtract the median of the
background followed by recursive Gaussian smoothing. To
estimate the median of the background we inspect two strips
(with width of 1/10 of the image width) located at the top and
the bottom of the image and extract the median value of these
regions.
Following noise reduction, we employ an iterative scheme

to segment the image into regions containing the lesion and
the background skin. To do so we apply an ISODATA al-
gorithm to determine an optimal threshold value T for an
image [12]. If I is the image and Ri denotes the i-th of N
regions of the image, the iterative scheme for estimating the
N−1 optimal thresholds and theN mean intensities are given
by

Tk+1 =
μRi,k + μRi+1,k

2
until Tk+1 = Tk (3)

and

μRi,k =

∑
m,n∈Ri,k

z(m,n)

NRi,k

(4)

where Tk+1 is the optimal threshold separating pixels in re-
gionRi from pixels in regionRi+1 and, at step k, μRi,k repre-
sents the ratio of the mean pixel value z(m,n) in regionRi to
the total number of pixelsNRi,k in that region. The process is
repeated based upon the newly generated threshold, until the
threshold value has converged.
Finally, a post-processing step is applied that removes iso-

lated pixels and small objects that are not likely to be part of
the lesion.
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4. EXPERIMENTAL RESULTS

We evaluated our approach on a large dataset of 90 der-
moscopy images (23 invasive malignant melanoma and 67
benign) obtained from the EDRA Interactive Atlas of Der-
moscopy [2], and the dermatology practices of Dr. Ashfaq
Marghoob (New York, NY), Dr. Harold Rabinovitz (Plan-
tation, FL) and Dr. Scott Menzies (Sydney, Australia). The
benign lesions included nevocellular nevi and dysplastic
nevi. Manual borders were obtained by selecting a num-
ber of points on the lesion border, connecting these points
by a second-order B-spline and finally filling the resulting
closed curve. Three sets of manual borders were determined
by three expert dermatologists, Dr. William Stoecker, Dr.
Joseph Malters, and Dr. James Grichnik using this method.
As performance measure we use the XOR measure pro-

posed in [13] which quantifies the percentage border detec-
tion error by

Error =
Area (AB ⊕ MB)

Area (MB)
(5)

where AB and MB are the binary images obtained by fill-
ing the automatic and manual borders, respectively, ⊕ is the
exclusive-OR (XOR) operation that gives the pixels for which
AB and MB disagree, and Area(I) denotes the number of
pixels in the binary image I .
The results for all 90 images as well as averages over the

whole dataset are listed in Table 1. In there, we give the
XOR measures obtained on each individual colour channel
(i.e., red, green, and, blue) as well as on the luminance chan-
nel L = (R + G + B)/3 [14], averaged over all three ground
truth segmentations. We do this both for unprocessed RGB
images that only undergo the same segmentation method as
detailed in Section 3 as well as our full algorithm that incor-
porates the colour normalisation step described in Section 2.
From Table 1 we can see that our approach is capable of

achieving good segmentation performance which is charac-
terised by an average XOR error of only 0.14 over the whole
dataset when choosing the blue channel (as is often done in
tumor segmentation [13]) or the green channel, respectively
0.18 for luminance L. This compares favourably to other le-
sion segmentation algorithms such as the orientation-sensitive
fuzzy c-means algorithm [15] which produces an average er-
ror of 0.24 on the same dataset. We also see that the pro-
posed application of a colour normalisation step proves cru-
cial in achieving this performance as segmentation based on
the same border detection algorithm but on unprocessed im-
ages is clearly inferior: results on the original RGB images
show an average error of 0.25 for the blue channel respec-
tively 0.39 based on luminance. An example of this difference
is illustrated in Figure 2 which provides the final segmenta-
tions (based on the blue channel) of the two images from Fig-
ure 1 (which is Image 29 in Table 1). It is apparent that the
segmentation obtained from the normalised image is more ac-

RGB ACE
R G B L R G B L

1 0.74 0.47 0.33 0.51 0.29 0.21 0.14 0.21
2 1.06 1.06 0.40 0.84 0.54 0.20 0.11 0.28
3 1.09 0.43 0.24 0.59 0.40 0.17 0.11 0.23
4 1.07 1.07 1.07 1.07 0.36 0.10 0.07 0.18
5 0.47 0.24 0.17 0.30 0.19 0.15 0.10 0.14
6 1.09 0.74 0.33 0.72 0.25 0.12 0.07 0.15
7 1.14 0.76 0.30 0.73 0.26 0.16 0.12 0.18
8 1.18 1.18 1.18 1.18 0.21 0.08 0.06 0.11
9 1.08 0.65 1.08 0.94 0.10 0.07 0.06 0.08
10 1.23 1.22 0.52 0.99 0.09 0.12 0.17 0.13
11 0.60 0.38 0.28 0.42 0.37 0.09 0.07 0.17
12 0.48 0.21 0.18 0.29 0.23 0.13 0.11 0.16
13 0.41 0.25 0.19 0.28 0.28 0.25 0.19 0.24
14 0.47 0.28 0.20 0.31 0.16 0.12 0.12 0.13
15 0.40 0.19 0.16 0.25 0.17 0.09 0.09 0.12
16 0.65 0.35 0.28 0.42 0.42 0.10 0.12 0.21
17 0.23 0.10 0.06 0.13 0.07 0.05 0.05 0.05
18 0.36 0.28 0.24 0.29 0.15 0.08 0.09 0.11
19 0.28 0.21 0.17 0.22 0.17 0.16 0.13 0.16
20 0.32 0.17 0.12 0.20 0.19 0.12 0.10 0.14
21 0.39 0.22 0.16 0.26 0.30 0.19 0.15 0.21
22 0.38 0.22 0.15 0.25 0.27 0.15 0.11 0.18
23 0.40 0.29 0.20 0.30 0.25 0.10 0.09 0.15
24 0.40 0.20 0.12 0.24 0.20 0.06 0.06 0.11
25 0.79 0.52 0.41 0.57 0.67 0.30 0.25 0.41
26 0.43 0.28 0.18 0.30 0.30 0.17 0.13 0.20
27 0.63 0.33 0.21 0.39 0.29 0.11 0.11 0.17
28 0.37 0.23 0.15 0.25 0.24 0.18 0.13 0.18
29 0.51 0.22 0.15 0.29 0.36 0.13 0.11 0.20
30 0.52 0.27 0.20 0.33 0.32 0.18 0.14 0.21
31 0.34 0.19 0.13 0.22 0.24 0.16 0.11 0.17
32 0.26 0.15 0.11 0.17 0.11 0.10 0.17 0.13
33 0.23 0.10 0.07 0.13 0.13 0.06 0.05 0.08
34 0.23 0.11 0.07 0.14 0.07 0.07 0.12 0.09
35 0.34 0.19 0.11 0.21 0.21 0.08 0.07 0.12
36 0.30 0.15 0.10 0.18 0.11 0.04 0.04 0.07
37 0.73 0.24 0.19 0.38 0.30 0.08 0.08 0.15
38 0.36 0.20 0.15 0.24 0.15 0.16 0.18 0.17
39 0.29 0.13 0.09 0.17 0.06 0.07 0.08 0.07
40 0.46 0.23 0.16 0.29 0.30 0.11 0.08 0.16
41 0.25 0.12 0.09 0.15 0.08 0.07 0.11 0.08
42 0.41 0.23 0.16 0.27 0.23 0.09 0.08 0.13
43 0.50 0.24 0.19 0.31 0.32 0.22 0.20 0.25
44 0.31 0.14 0.09 0.18 0.05 0.06 0.06 0.05
45 0.27 0.09 0.06 0.14 0.11 0.07 0.05 0.08
46 0.77 0.45 0.27 0.50 0.33 0.30 0.32 0.32
47 1.04 0.58 0.43 0.68 0.28 0.23 0.23 0.25
48 0.17 0.08 0.12 0.12 0.09 0.15 0.16 0.13
49 0.19 0.12 0.23 0.18 0.09 0.11 0.20 0.13
50 0.63 0.35 0.22 0.40 0.42 0.16 0.11 0.23
51 0.57 0.32 0.25 0.38 0.39 0.14 0.13 0.22
52 0.23 0.17 0.17 0.19 0.06 0.08 0.12 0.09
53 0.32 0.19 0.11 0.21 0.17 0.10 0.07 0.12
54 0.30 0.19 0.19 0.22 0.12 0.09 0.08 0.10
55 0.07 0.08 0.14 0.09 0.05 0.04 0.09 0.06
56 0.14 0.15 0.16 0.15 0.06 0.08 0.11 0.08
57 0.56 0.37 0.28 0.40 0.38 0.19 0.14 0.24
58 0.39 0.21 0.14 0.25 0.26 0.14 0.10 0.17
59 0.28 0.20 0.12 0.20 0.13 0.08 0.06 0.09
60 0.37 0.26 0.20 0.28 0.18 0.19 0.29 0.22
61 0.32 0.19 0.14 0.22 0.18 0.10 0.16 0.15
62 0.49 0.33 0.31 0.38 0.34 0.22 0.25 0.27
63 0.57 0.23 0.16 0.32 0.45 0.11 0.07 0.21
64 0.30 0.21 0.18 0.23 0.11 0.09 0.09 0.09
65 0.29 0.16 0.10 0.18 0.10 0.11 0.16 0.12
66 0.52 0.27 0.20 0.33 0.14 0.15 0.25 0.18
67 0.70 0.30 0.23 0.41 0.32 0.09 0.07 0.16
68 0.43 0.22 0.27 0.31 0.29 0.36 0.48 0.38
69 0.81 0.29 0.15 0.42 0.25 0.07 0.13 0.15
70 0.43 0.17 0.12 0.24 0.14 0.05 0.11 0.10
71 1.02 0.48 0.41 0.64 0.25 0.08 0.08 0.14
72 0.50 0.31 0.31 0.37 0.40 0.18 0.29 0.29
73 0.55 0.26 0.21 0.34 0.33 0.13 0.10 0.18
74 0.93 0.59 0.48 0.66 0.64 0.20 0.20 0.35
75 0.82 0.43 0.28 0.51 0.26 0.21 0.18 0.22
76 0.76 0.58 0.46 0.60 0.32 0.13 0.10 0.18
77 0.66 0.32 0.24 0.41 0.23 0.09 0.17 0.16
78 0.68 0.38 0.30 0.45 0.14 0.09 0.09 0.11
79 0.73 0.43 0.18 0.45 0.45 0.29 0.21 0.32
80 0.40 0.27 0.22 0.30 0.21 0.09 0.08 0.13
81 0.58 0.32 0.26 0.38 0.35 0.27 0.43 0.35
82 0.87 0.59 0.49 0.65 0.50 0.23 0.15 0.29
83 0.92 0.67 0.48 0.69 0.25 0.14 0.14 0.18
84 0.98 0.16 0.11 0.42 0.93 0.11 0.07 0.37
85 1.09 0.95 0.56 0.87 0.16 0.06 0.08 0.10
86 1.19 1.11 0.82 1.04 0.49 0.19 0.16 0.28
87 0.62 0.36 0.24 0.40 0.22 0.16 0.12 0.16
88 0.51 0.10 0.07 0.23 0.16 0.06 0.05 0.09
89 0.77 0.48 0.34 0.53 0.27 0.12 0.10 0.16
90 0.95 0.40 0.35 0.57 0.67 0.55 0.80 0.67

average 0.57 0.34 0.25 0.39 0.26 0.14 0.14 0.18

Table 1. Experimental results of segmentation algorithm
based on RGB and ACE input.

3363



curate (average 0.36, 0.13, and 0.11 for segmentations based
red, green, and blue channel) compared to that based on the
original image (average errors of 0.51, 0.22, and 0.15).

Fig. 2. Segmentation results for the images in Figure 1.
Top row: manual segmentations derived by 3 dermatologists.
Middle row: segmentation based on red, green, and blue
channel of original lesion image. Bottom row: segmentation
based on red, green, and blue channel of colour normalised
image.

5. CONCLUSIONS

In this paper we have presented a successful approach to au-
tomatic identification of lesion borders in dermoscopic im-
ages. Importantly, we employ a colour normalisation tech-
nique to reduce colour variations and enhance image con-
trast. This is followed by a segmentation method that iter-
atively estimates threshold values for optimal separation of
lesion and skin regions. Experiments on a large dataset of
dermoscopy images have confirmed good segmentation accu-
racy as judged by comparison with manual borders obtained
from three expert dermatologists, and have also demonstrated
that the colour normalisation stage is crucial in achieving this
performance.
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