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ABSTRACT

In the emerging peer-to-peer (P2P) live streaming, users coop-
erate with each other to support efficient delivery of video over net-
works in live streaming applications. Pollution attack is an effec-
tive attack against P2P live streaming, where attackers upload bo-
gus multimedia data to their peers. The polluted data can spread
over the entire network, and cause severe quality degradation of the
videos. To resist pollution attacks in P2P live streaming, this paper
proposes a trust management system that identifies attackers and ex-
cludes them from further sharing of multimedia data. We investigate
possible attacks against the trust management system and analyze
the attack resistance of the proposed system. Our simulation results
show that the proposed trust management system can efficiently de-
tect attackers and stimulate user cooperation even under attacks. It
helps users receive more clean data and improves the performance
of P2P live streaming.

Index Terms— Peer-to-peer live streaming, trust management,
pollution attacks

1. INTRODUCTION

Wewitness the emergence of large-scale multimedia social networks
in the past decade, where millions of users share and exchange dig-
ital media content. Peer-to-peer (P2P) live streaming is one of the
popular multimedia social networks on the Internet, and we have
seen many successful deployments, for example, PPLive, Cool-
streaming, etc. In P2P live streaming, users watch live TV programs
over networks simultaneously [1, 2]. P2P live streaming systems
rely on voluntary contributions of resources from individual users
to achieve high system scalability and robustness. Cooperation also
enables users to access extra resources from others and thus benefits
each individual user.

The distributed nature of P2P live streaming systems makes
them vulnerable to attacks, for example, the pollution attack where
attackers (polluters) upload bogus data to their peers. Unable to
differentiate between the polluted and the clean data, users may also
unintentionally forward polluted data to other users. A recent study
showed that without proper defense mechanisms, polluted data may
spread over the entire network, degrade the quality of the rendered
videos, and significantly damage the system [3]. Also, such pol-
lution attacks may cause distrust among users and prohibit user
cooperation. To provide reliable service and further proliferate P2P
live streaming, it is of ample importance to design pollution-resistant
P2P live streaming and to ensure the quality of service.

Pollution resistance in P2P live streaming is challenging due to
the stringent delay constraint, that is, a clean packet must be received
before its playback time to improve the quality of the rendered video.
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Furthermore, attackers may use the hand wash attack, where they
temporarily leave the system after being detected and come back
later with new user IDs [4]. To resist pollution attacks, in [3], a
chunk signing algorithm was proposed, where digital signatures of
the video were transmitted together with the compressed bit stream
to help verify the authenticity of the video. The work in [5] proposed
a theoretical framework to analyze the number of infected users. In
[6], blacklisting and reputation system were used to detect attackers,
while their work did not consider the hand wash attack.

This paper proposes a trust management system for P2P live
streaming, which can identify polluters and exclude them from fur-
ther uploading and downloading of data. To resist the On-Off attack
against trust management, we use the adaptive time window-based
algorithm to periodically update the trust values [7]. To resist the
flooding attack with hand wash, we address the challenging strin-
gent delay constraint in P2P live streaming and the powerful hand
wash attack, and propose an early decoding method to detect the
polluted data chunks as early as possible. Our results show that this
early detection of polluted chunks can help speed up the identifica-
tion of polluters, significantly reduce the trust management system’s
false alarm rate, stimulate user cooperation even under attacks, and
improve the quality of the videos rendered at the users’ side.

The rest of the paper is organized as follows. Section 2 intro-
duces the mesh-pull P2P live streaming systems and the pollution
attacks. Section 3 introduces the trust management system for P2P
live streaming. In Section 4, we analyze the performance of the trust
management system under the On-Off attack and the flooding attack
with hand wash. Conclusions are drawn in Section 5.

2. MESH-PULL P2P LIVE STREAMING

2.1. Mesh-pull P2P Live Streaming

In mesh-pull P2P live streaming systems, multimedia content is di-
vided into small data chunks of M bits per chunk, all of which are
available at the streaming server [1]. Each user maintains a buffer
to store received data chunks that have not been decoded. Each user
keeps a buffer map to record the indices of the received chunks, and
users periodically exchange buffer map information with each other.

In P2P live streaming, time is divided into rounds of equal length
(τ seconds per round). At the beginning of each round, user i se-
lects one missing chunk k, and in our work, data chunks with tighter
playback deadlines are given higher priorities. Then, based on the
exchanged buffer map information, user i selects either the stream-
ing server or another user j whose buffer has chunk k, and sends
a request. The streaming server answers all data chunk requests in
a round robin fashion. When user j receives a request from user
i, he/she can either reject the request or upload chunk k to user i.
Following the work in [2], we assume that each user can accept at
most one request per round, and chunks that do not arrive at the re-
ceivers within one round will be dropped. When user i first joins
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the network, he/she buffers enough contiguous data chunks before
launching the video player and rendering the video. Then, user i
periodically moves the first B chunks in the buffer with the earliest
playback time to the video player for decoding and playing. The
above process is repeated for all rounds by all users. In this paper,
the credit line mechanism in [2] is adopted to avoid free riding and
to stimulate user cooperation in P2P live streaming.

2.2. The Pollution Attack

In the pollution attack, an attacker (polluter) enters P2P live stream-
ing with a valid user ID, establishes partnership with other users and
intentionally uploads bogus chunks to his/her peers [3]. Such pol-
luted data chunks render the content useless and degrade the quality
of the video. Note that unsuspicious users may unintentionally for-
ward these polluted chunks to others. Thus, the polluted content can
quickly spread over the entire P2P network and cause serious dam-
ages to the system [3]. Polluters aim to send as many polluted chunks
as possible and prevent other users from getting clean chunks.

To generate a polluted data chunk, a simple solution is to ran-
domly generate M bits. Such randomly generated polluted chunks
can be easily detected by a quick syntax check and verification of its
format compliance with the video compression standard. A polluter
can also generate a format-compliant polluted data chunk with in-
correct or meaningless content. Such a polluted chunk can pass the
syntax verification and can only be detected when it is fully decoded
(after IDCT and motion compensation). In this paper, we assume
that a randomly generated polluted chunk can be detected immedi-
ately after its arrival, and we focus on the more challenging format-
compliant pollution attack.

This paper considers a simple scenario where polluters attack
the system individually and independently. We plan to investigate in
the future the more challenging scenario where a group of attackers
collude together to attack the system more effectively.

3. BUILDING TRUST IN P2P LIVE STREAMING

In our trust management system, users assign trust values to each
other. Ti(j) ∈ [0, 1] measures the trust that user i has on user j to
upload a clean chunk, and a higher value of Ti(j) indicates that user
i has a higher confidence that user j will upload clean chunks. Note
that a polluted chunk can only be detected when it is decoded. Thus,
in our trust management system, for every received data chunk, each
user keeps a record of its source. When user i moves the first B
chunks from his/her buffer to the video player for decoding, user i
detects polluted chunks in the newly decodedB chunks, and updates
his/her trust values Ti(j).

3.1. Trust Definition

Following the work in [6], Ti(j) contains two components, the direct
trust valueDVi(j), which reflects the previous direct contact experi-
ence between user i and j, and the indirect reference value IDVi(j),
which is the reference value about user j that user i receives from
other users. At time t, among all the decoded chunks that user i re-
ceived from user j, letNci,j(t) andNpi,j(t) be the total number of
clean copies and that of the pollute copies, respectively. Then,

DVi(j)(t) =
ci(j)(t)

ci(j)(t) + pi(j)(t)
, (1)

where ci(j)(t) = f(Nci,j(t)) and pi(j)(t) = g(Npi,j(t)) are func-
tions of Nci,j(t) and Npi,j(t), respectively. A simple example is

to let ci(j)(t) = Nci,j(t) and pi(j)(t) = Npi,j(t), and in this case,
DVi(j)(t) is the percentage of clean chunks that user j has uploaded
to user i by time t. For an unknown user j, i setsDVi(j)(t) = 0.5.

The indirect reference value IDVi(j) captures the network (that
is, the communities) opinion on user j [6]. Periodically, each user
i sends requests to a set of randomly selected peers to collect their
past direct experiences with j, and computes

IDVi(j)(t) =

∑
k∈Ui(j)(t)

DVi(k)(t)RVk(j)(t)∑
k∈Ui(j)(t)

DVi(k)(t)
, (2)

where Ui(j)(t) is the set of peers that respond to user i’s request at
time t asking for their opinions about user j [6]. RVk(j)(t) is user
k’s reference about user j, and in this paper, we let RVk(j)(t) =
DVk(j)(t) [8]. In (2), we normalize user k’s reference RVk(j)(t)
with DVi(k)(t), user i’s local reputation regarding user k, to resist
user defamation [8]. Here, the assumptions are that untrusted peers
are more likely to submit false feedbacks to hide their own malicious
behavior, and trustworthy peers are more likely to be honest on the
feedbacks [8]. In this work, each user randomly selects 20 peers and
asks them for their reference values.

Given DVi(j)(t) and IDVi(j)(t) as defined in the above,

Ti(j)(t) = βDVi(j)(t) + (1 − β)IDVi(j)(t), (3)

where 0 ≤ β ≤ 1 is a parameter to adjust the weight between the
direct trust value and the indirect reference value. User i updates
Ti(j)(t) when he/she decodes new data chunks and when he/she re-
ceives updated reference values from others.

3.2. Performance Criteria

Given the above trust definition, at time t, user i trusts user j if
Ti(j)(t) ≥ th where th is a predetermined threshold. Users will
only cooperate with their trusted peers to exchange data chunks. If
Ti(j)(t) < th, user i considers user j as a malicious polluter, and
will not send requests or upload chunks to user j. In this paper, we
select th = 0.5 so that users can cooperate with each other at the
beginning of the live streaming program.

Let Um be the set containing all malicious polluters. For all
other users who do not intentionally send polluted chunks, we call
them selfish users, and Us is the set including all selfish users. To
measure the performance of the trust management system in identi-
fying polluters, we use the following criteria:

Pd(t) =

∑
i∈Us,j∈Um

I
[
Ti(j)(t) < th

]
|Us| · |Um|

and Pf (t) =

∑
i,j∈Us

I
[
Ti(j)(t) < th

]
|Us|2

, (4)

where I [.] is the indicator function and |A| returns the size of the
set A. Pd is the rate that a selfish user correctly detects a malicious
polluter, and Pf is the rate that a selfish user falsely accuse another
selfish user as a polluter. A larger Pd and a smaller Pf indicate that
the trust management system is more effective in identifying polluter
without falsely accusing innocents.

At time t, when a selfish user j forwards the first B data chunks
in his/her buffer to the video player for decoding, let Nj(t) be the
number of clean chunks among those B chunks that are to be for-
warded. We use Pc(t)

�
=

∑
j∈Us

(Nj(t)/B) /|Us| to measure the
effectiveness of the trust management system in reducing polluted
chunks. A larger Pc indicates that selfish users receive more clean
chunks and thus decode videos of higher quality.
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4. ATTACK-RESISTANT TRUSTMANAGEMENT

Given the above trust management system, polluters try all means
to hide their malicious behavior while sending out as many polluted
chunks as possible. Attack resistance is a crucial requirement for
trust management in P2P live streaming. In this paper, we consider
two different types of attacks, the On-Off attack and the flooding
attack with hand wash, and investigate the performance of the trust
management systems under these attacks.

4.1. The On-Off Attack

With the On-Off attack, a polluter uploads polluted and clean chunks
alternatively, and pretends to be a selfish user who “unintentionally”
sends polluted chunks from time to time. We define Roffon as the
off-on ratio, which is the average number of clean chunks that a
polluter uploads per polluted chunk that he/she uploads. A larger
Roffon indicates that the polluter sends more clean chunks before
he/she sends another polluted copy. The On-Off attack exploits time-
domain inconsistency to attack the trust management system, and
helps the attacker avoid being detected while causing damages to the
live streaming system [7]. Thus, it poses new challenges to distin-
guish malicious polluters who deploy the On-Off attack from selfish
users who unintentionally upload polluted chunks.

To address this dynamic personality of peers, following the work
in [7, 8], we use an adaptive time window-based algorithm and in-
troduce an adaptive forgetting factor 0 < f < 1. The basic idea is
as follows: the trust value cannot be quickly increased by uploading
only a small number of clean chunks, and it will drop immediately
if a user starts uploading polluted chunks.

In our trust model, similar to [7], the forgetting factor f is de-
fined as

f =

{
1 − ε if DVi(j)(t) ≤ 0.5,

ε if DVi(j)(t) > 0.5,
(5)

where 0 < ε < 0.5. We let ε = 0.1 in this paper. When a selfish
user i updates the trust values at time t, based on his/her last updated
trust values at time t − 1, user i first calculates

ci,j(t) = ci,j(t − 1)f + Nci,j(t) − Nci,j(t − 1),
pi,j(t) = pi,j(t − 1)f + Npi,j(t) − Npi,j(t − 1), (6)

and then user i calculates DVi(j)(t) and Ti(j)(t) using (1) and (3),
respectively. The adaptive forgetting factor makes the trust manage-
ment system remember bad behavior for a longer time than good be-
havior, and a user needs to continuously upload many clean chunks
to recover his/her trust value.

Figure 1 shows our simulation results on the On-Off attack. In
our simulations, there are a total of 144 users. 36 of them use DSL
connections with upload bandwidth of 1Mbps, and the rest are cable
users whose upload bandwidth are 300Kbps. There are 10 polluters
who send polluted data chunks and attack the trust management sys-
tem independently, and the rest are selfish users. The streaming
server’s upload bandwidth is 6Mbps. Each user’s buffer can store
30 seconds’ video frames. Each round lasts τ = 1/9 second, and
B = 4 data chunks are forwarded to the video player for decoding
per second. We use the “foreman” video sequence with frame rate
30 frames per second and encode it at bit rate 64Kbps. Each group of
picture (GOP) has a duration of 1 second, and each GOP is divided
into 4 data chunks of equal length.

Figure 1 plots Pd and Pf when polluters use different Roffon.
From Figure 1, Pf < 1% after the initial buffering stage and the
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Fig. 1. Performance of the trust management system under On-Off
attacks. β = 0.25, th = 0.5, and ε = 0.1.

false alarm rate is relatively unaffected by the off-on ratio. In ad-
dition, when a polluter chooses a higher Roffon and uploads more
polluted data chunks, he/she has a larger chance of being detected.
Thus, to remain undetected, a polluter has to upload much more
clean chunks than polluted ones, and the adaptive window-based
trust management system can effectively resist the On-Off attack.

4.2. The Flooding Attack with Hand Wash

In the flooding attack, a polluter claims that he/she has all the chunks,
thus attracting a lot of requests from other users. He/she then sends
polluted chunks whenever possible. The flooding attack utilizes the
fact that in the current P2P live streaming system, a polluted data
chunk cannot be detected until its playback time, and there is a time
difference between the arrival and the detection of a polluted chunk.
The polluter uses this lag to flood selfish users’ buffers with as many
polluted chunks as possible. In addition, since the selfish user is un-
aware of the existence of a polluted chunk, he/she may forward it to
other users, which makes the polluted chunk spread over the whole
network. To make it even worse, the unintentional forwarding of pol-
luted chunks reduces the selfish user’s trust value and increases the
false alarm rate of the trust management system. Thus, selfish users
will not cooperate with each other, which significantly damages the
performance of P2P live streaming systems. The flooding attack is
especially effective if used together with the hand wash attack.

Figure 2 and Figure 3 demonstrate the effectiveness of the flood-
ing attack with hand wash. The simulation setup is the same as in
Figure 1, and a polluter reenters the system with a new ID every
150 rounds. From Figure 2, whenever the polluters apply the hand
wash attack, the trust management system takes a few dozen rounds
to detect the polluters again (with Pd ≥ 0.9), which is long enough
for polluters to cause significant damages. Also, the flooding attack
with hand wash gives a false alarm rate of 0.9, which prevents self-
ish users from cooperating with each other and causes the extremely
low Pc ≤ 5% in Figure 3. Consequently, it is critical to design trust
management systems that can resist the flooding attack with hand
wash in P2P live streaming.

We propose early decoding that decodes data chunks and de-
tects polluted ones as early as possible. If a polluted data chunk is
not detected until its playback time, the selfish user has no chance to
ask for a clean copy. Early detection of a polluted chunk gives the
selfish user a second chance to request a clean copy, and thus im-
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Fig. 2. Pd and Pf under the flooding attack with hand wash.

proves the quality of the rendered video. Furthermore, once a chunk
is detected as polluted, the selfish user deletes it from his/her buffer,
which prevents the propagation of the polluted chunk. Also, early
decoding will enable early detection of polluters and prevent them
from upload more polluted data. Finally, early decoding reduces
the number of polluted chunks that are unintentionally forwarded by
selfish users, and helps reduce the false alarm rate of the trust man-
agement system. Thus, it stimulates user cooperation and improves
the system performance.

Note that current video compression standards use motion es-
timation to remove temporal/spatial redundancy, which introduces
data dependency in the compressed video bit stream. To address
this issue, we explore the independence among different GOPs, and
divide each user’s buffer into blocks of equal length, each with B
chunks that belong to one GOP. With the simulation setup in Figure
1, each GOP includes one second’s frames and B = 4 data chunks.
When a user determines which chunk to request, he/she first decides
which block to request and gives higher priorities to blocks with ear-
lier playback time. Once block k is selected, the user will request
the first missing chunk in block k. Such a GOP-based chunk request
algorithm allows users to decode a data chunk and determine if it is
polluted right after its arrival.

An issue with early decoding is that additional storage space is
required to save the decoded frames that have not reached their play-
back time. Such huge storage space may not always be available.
To address this issue, we assume that each user has enough space
to store τs seconds’ video frames in uncompressed format, and it is
updated periodically in a sliding window fashion. We apply early
decoding only to the first τs blocks in the buffer. With a larger τs,
more data chunks can be decoded immediately after their arrivals
and, therefore, more polluted chunks can be detected earlier. Thus, a
larger τs is preferred to improve the robustness of the system against
the flooding attack with hand wash.

Figure 2 and Figure 3 show the effectiveness of our proposed
chunk request and early decoding algorithm with τs = 6 seconds.
From Figure 2, early decoding helps detect malicious polluters ear-
lier and reduces the false alarm rate from 0.9 to Pf ≤ 0.16. It stim-
ulates user cooperation and Pc is increased above 0.9 as shown in
Figure 3. Even under the flooding attack with hand wash, early de-
coding helps a selfish user receive more than 90% of the data chunks
in the video, all of which are clean, and it improves the robustness
of the trust management system in P2P live streaming.
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5. CONCLUSIONS

In this paper, we proposed a trust management system to resist pol-
lution attacks in peer-to-peer live streaming, and analyzed its attack
resistance. To resist the On-Off attack, we used a window-based
trust updating algorithm with an adaptive forgetting factor, which
forces polluters to upload many clean chunks if they wish to remain
undetected. To resist the flooding attack with hand wash, we pro-
posed to use early decoding and the GOP-based chunk request algo-
rithm to detect polluted chunks as early as possible. Our simulation
results show that the proposed trust management system can effec-
tively identify polluters, stimulate user cooperation even under these
attacks, and significantly improve the quality of the rendered videos
at the user’s side.
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