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ABSTRACT

Compressive sampling is a novel framework that exploits sparsity
of a signal in a transform domain to perform sampling below the
Nyquist rate. In this paper, we apply compressive sampling to reduce
the sampling rate of images/video. The key idea is to exploit the
intra- and inter-frame correlation to improve signal recovery algo-
rithms. The image is split into non-overlapping blocks of fixed size,
which are independently compressively sampled exploiting sparsity
of natural scenes in the Discrete Cosine Transform (DCT) domain.
At the decoder, each block is recovered using useful information
extracted from the recovery of a neighboring block. In the case
of video, a previous frame is used to help recovery of consecutive
frames. The iterative algorithm for signal recovery with side infor-
mation that extends the standard orthogonal matching pursuit (OMP)
algorithm is employed. Simulation results are given for Magnetic
Resonance Imaging (MRI) and video sequences to illustrate advan-
tages of the proposed solution compared to the case when side infor-
mation is not used.

Index Terms— Image processing, Image reconstruction

1. INTRODUCTION

Compressive sampling (CS) replaces conventional sampling and re-
construction with a more general linear measurement scheme and an
optimization procedure to acquire a subset of signals within a source
at a rate that is below Nyquist. A number of theoretical contributions
have appeared on CS (see [1]) over the past few years.

In this paper we investigate the use of CS for acquisition of im-
age/video. Indeed, using the fact that natural images are sparse in a
transform domain, one can reduce the required sampling rate without
sacrificing perceptual quality. Conventionally, after acquisition of a
gray-scale image, Discrete Cosine Transform (DCT) is performed
on the image using values assigned to each pixel. After DCT, many
coefficients will be zero or will carry negligible energy; these redun-
dant coefficients are discarded before quantization or/and entropy
coding. Hence, though the image is acquired fully, much of the ac-
quired information is discarded after DCT.

Thus CS seems a natural tool to reduce the number of acquired
samples - this is envisioned to dramatically reduce imaging cost in
the spectrum where silicon is blind [2]. Silicon is improving in
capacity for visible light image capture so this technique will not
benefit the commonplace visible-light digital camera. However, for
cameras capturing scenes at infra-red or other parts of the spectrum,
like terahertz imaging, CS has huge potential because silicon-based
sensors are not available and thus the cost of sensing is expensive.
Although the key concepts have already been laid out, many issues
still remain to be resolved before practical compressive imaging is
deployed widely. One of the main challenge is designing efficient

and fast signal recovery algorithms, that are able to reconstruct an
N -dimensional signal using M < N measurements by exploiting
sparsity of the signal in a domain of choice. Since optimal recov-
ery is an NP-hard problem, several sub-optimal solutions have been
reported (see [1, 3]). One of them is the orthogonal matching pur-
suit (OMP) algorithm [4], which is very popular due to its relatively
lower complexity compared to other proposed reconstruction meth-
ods. However, the execution time of OMP is still high for many
practical applications where sparsity of the signal and its dimension
are high. One such example is image/video acquisition [2], where
frame sizes are usually too large for OMP recovery.

Benefits of compressive imaging have been shown by several re-
search groups (see [1] and references therein). For example, [5] in-
vestigates the possibility of applying compressive sampling to Mag-
netic Resonance Imaging (MRI) acquisition. Several optical archi-
tectures are compared in [6] for compressive imaging applications.
In [7], we proposed a scheme for compressive video sampling that
exploits local sparsity within a frame, followed by OMP recovery.
In [2], two methods are proposed to build a single-pixel video cam-
era. The first method is frame-by-frame reconstruction with CS in a
2D wavelet domain, and the second one exploits a 3D measurement
matrix and a 3D wavelet transform to achieve joint reconstruction of
all the frames. Whereas it is expected that the latter approach will
show better performance, its complexity is higher. The first, lower
complexity approach, reconstructs each frame without using useful
information about previously reconstructed frames.

In this paper we propose a scheme for compressive imaging,
which follows the first approach of [2]. The improved performance
at reduced complexity is achieved by exploiting intra- and inter-
frame correlation via a signal recovery algorithm with side infor-
mation. The algorithm extends OMP to the case when a priori in-
formation about the source is present at the decoder in the form of
estimated positions of significant signal’s elements. If the side infor-
mation is correct, the algorithm finds the solution with fewer number
of iterations than OMP. In addition, the quality of the solution is gen-
erally better, which indicates that fewer measurements are needed. If
the side information is noisy, i.e., some of the assumed positions at
the decoder are not correct, the algorithm has a mechanism to correct
them and converge to the correct solution.

The algorithm is suitable for scenarios where the decoder has
access to a correlated source, like in image/video acquisition where
a previously reconstructed block can play the role of side informa-
tion. We suppose that the first frame is available at the decoder, and
each subsequent frame is compressively sampled and reconstructed
at the decoder using a previous frame. For single-image sampling,
the image is split into non-overlapping blocks, and at the decoder,
each block is recovered using useful information extracted from the
recovery of a neighboring block. Our scheme can be used with the
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single-pixel camera architecture [2] or MRI [5]. In our experiments,
we use high resolution images and simulate how well we could have
recovered the image/video after CS. Our simulation results show that
it is possible to reduce the number of acquired samples using CS
without sacrificing the reconstruction performance.

2. COMPRESSIVE SAMPLING

Compressive sampling (CS) is a novel framework that enables sam-
pling below the Nyquist rate, without (or with a small) sacrifice in
reconstruction quality. It is based on exploiting sparsity of the signal
in some domain. In this section we briefly review CS.

Let x be a vector of N samples of a real-valued, discrete-time
random process. Let

x = Ψs =
N∑

i=1

siψi, (1)

where s = [s1, . . . , sN ] is an N -vector of weighted coefficients
si = 〈x, ψi〉, and Ψ = [ψ1|ψ2| · · · |ψN ] is an N × N orthonor-
mal basis matrix with ψi being the i-th basis column vector. That is,
s is the representation of x in domain Ψ. For example, si’s can be
discrete cosine or Fourier coefficients.

Vector x is considered K-sparse in the domain Ψ, for K �
N , if only K out of N elements of s are non-zero. Many natural
signals can be approximated as sparse since they have many non-
significant (close to zero) coefficients after transform. Sparsity of a
signal is used for compression with conventional transform coding,
where the whole signal is first acquired (all N samples), then the N
transform coefficients s are obtained via s = Ψ−1x, and finally N−
K non-significant coefficients of s are discarded and the remaining
are encoded. The resulting acquisition redundancy is due to large
amounts of data being discarded because they carry negligible or no
energy.

The main idea of CS is to remove this “sampling redundancy”
by requiring only M samples of the signal, where K < M � N .
Let y be an M -length measurement vector given by:

y = Φx,

where Φ is an M × N measurement matrix. Then, the above ex-
pression can be written in terms of s as

y = ΦΨs = Φ′s. (2)

Sampling is performed in Ψ domain by collecting coefficients s,
which will work only if signal x is sparse in domain Ψ, i.e., N −K
elements of s are negligible.

Note that (2) is a dimensionality reduction thus leading to a loss
in information in general. That is, there are infinitely many x′ that
when multiplied by Φ give y. However, signal x can be recovered
losslessly from M ≈ K or slightly more measurements if the mea-
surement matrix Φ is properly designed, so that ΦΨ satisfies the
so-called restricted isometry property (RIP). This will always be true
if Φ and Ψ are incoherent, that is, the vectors of Φ cannot sparsely
represent basis vectors of Ψ and vice versa.

It was further shown that an independent identically distributed
(i.i.d.) zero-mean Gaussian matrix satisfies the above property for
any orthonormal Ψ with high probability. Some other choices of
Φ that satisfy RIP are random matrix with +1/-1 entries drawn from
uniform Bernoulli distribution, and randomly permuted vectors from
standard orthonormal bases, such as Fourier and Walsh-Hadamard.

Also, it has been shown that it is enough for a signal x to be r-
compressible (the sorted coefficients decay under a power law with
scaling exponent −r), instead of K-sparse (see [1] and references
therein).

Unfortunately, reconstruction of x (or equivalently, s) from vec-
tor y of M samples is not trivial. The exact solution is NP hard and
consists of finding the minimum l0 norm (the number of non-zero
elements). However, an excellent approximation can be obtained via
the l1 norm minimization given by:

ŝ = arg min ||s′||1, such that ΦΨs′ = y. (3)

A K-sparse signal can be recovered with high probability using
(3) if M ≥ cK log(N/K) for some small constant c. Thus, one can
recover N measurements of x with high probability from only M ≈
cK log(N/K) < N random measurements y under the assumption
that x is K-sparse in domain Ψ.

This convex optimization problem, namely, basis pursuit, can
be solved using a linear program algorithm of O(N3) complexity.
Due to complexity and low speed of linear programming algorithms,
faster solutions were proposed at the expense of slightly more mea-
surements, such as matching pursuit [3], tree matching pursuit [3],
OMP [4], and group testing.

3. PROPOSED SYSTEM
In this section, we describe our scheme for CS of image/video. We
start by describing a signal recovery algorithm building on OMP but
with side information, and then continue with the acquisition scheme
description.

3.1. Signal Recovery with Side Information

Suppose that Φ is the M × N random measurement matrix, and x
is the N -length K-sparse signal. The decoder has access to the M -
length measurement vector y = Φx. In addition, the decoder has a
priori knowledge about the signal, side information, in the form of
estimated positions of some significant elements in x (which might
not be correct). The problem is to reconstruct signal, x̂, based on y,
Φ, and side information. For a set Θ, |Θ| is its cardinality, and {}
denotes an empty set. For a matrix Ω, ωj denotes its j-th column;
furthermore, ΩΘ is a matrix of |Θ| columns of Ω with indices from
set Θ.

The main idea of the algorithm is to start with the estimated
positions of significant elements of x, and then in each iteration find
the most strongly correlated column among remaining ones. This
column will either be included as an additional column or replace
the column in the set of estimated positions that is least correlated.

Algorithm 1 Signal recovery with side information
INPUT:

• An M × N measurement matrix Φ

• An M -dimensional measurement vector y

• The sparsity level of the signal K

• Maximum number of iterations T ≥ K

• The side information set Λ1 with at the most K elements

• Constants κ1, κ2 ≤ 1.

OUTPUT:

• An N -dimensional estimate x̂ of the signal x

• A set Λt, t > 1, containing K elements from {1, . . . , N}
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PROCEDURE:
1. Set t = 1. If Λt = {} then Λt = {arg maxj=1..N |〈y, φj〉|}.
2. Ωt = ΦΛt , xt = arg minx ||y − Ωtx||2. Let p be the projected
value, and m̃ the least correlated column in Ωt to y.
3. r = y − Φxt

4. q = maxj=1..N |〈r, φj〉|
l̃ = arg maxj=1..N |〈r, φj〉|

5. If (p < qκ1) then Λt = Λt/{m̃}
else if (pκ2 < q) Λt+1 = Λt and goto 8

6. Λt+1 = Λt

⋃{l̃}. If |Λt+1| ≥ K then
{Ωt = ΦΛt+1 , xt = arg minx ||y − Ωtx||2 and goto 8 }

7. If t < T increment t and goto 2.
8. Stop: The estimate x̂ has nonzero indices at the components listed
in Λt+1. The value of x̂ in component λj equals the j-th component
of xt.
The algorithm allows possibility for a wrong guess, that is, the esti-
mated position(s) of the significant elements in x are wrong. This is
why the number of iterations T is allowed to be higher than K. In
the case when probability of a wrong guess is zero, T is equal K.

Λ1 is the set of the known/estimated positions of the significant
elements of x at the decoder. If Λ1 = {}, the algorithm boils down
to the OMP algorithm, thus in Step 1, as in OMP, Λ1 is set to the
most strongly correlated column in Φ to y.

In Step 2, Ωt is a matrix of columns of Φ that correspond to sig-
nificant elements of x based on side information. The decoder forms
a projection, xt, of y onto Ωt. Then, the decoder calculates the col-
umn in Ωt that is least correlated to y. This will be a candidate for
removal since it might be a wrong guess.

In Steps 3 and 4, a residual is computed based on the current
estimate xt, and as in OMP, the most strongly correlated column in
Φ from the remaining columns is computed and its index is set to l̃.
If column l̃ is more correlated than column m̃, m̃ is removed. Oth-
erwise, if m̃ is much more correlated (regulated by constant κ2), the
decoder concludes that there cannot be further improvement of the
estimate, and exits. If this is not the case, the decoder adds column l̃
to Ωt, increments t and goes to the next iteration.

If all initial guesses are correct, the algorithm boils down to
OMP with K − |Λ1| iterations, resulting in reduced complexity and
execution time. In more realistic situations when side information
is not perfect, e.g., reconstruction of correlated sources, the algo-
rithm effectively corrects wrong guesses after more than K − |Λ1|
iterations.

3.2. Compressive Image Acquisition in the DCT Domain

In [2] a single-pixel camera architecture was developed based on
the programmable digital micro-mirror device (DMD), which con-
sists of a 2D array of micro-mirrors, where each micro-mirror cor-
responds to one pixel on the image. The micro-mirrors’s orientation
(+12/-12 degrees) is controlled by a pseudo-random measurement
matrix Φ with +1/-1 entries drawn from uniform Bernoulli distribu-
tion. For each of M different DMD configurations (selected by Φ),
one measurement is obtained. A single photo-detector is used to gen-
erate M voltage readings corresponding to (2). Matching pursuit [3]
is then employed for reconstruction.

In the case of video acquisition, two methods are proposed in
[2]. In the first method, each frame is sampled in 2D domain and
recovered independently from the previous frames. In the second
method, a 3D measurement matrix and a 3D wavelet transform are
exploited to achieve joint reconstruction of group of frames. Whereas
it is expected that the latter approach will show better performance,
its complexity is higher. The frame-by-frame sampling is also more

flexible in terms of easy adjustment of the frame rate, it can poten-
tially track fast motion, and is in the spirit of conventional cameras.

We build on the single-pixel camera architecture [2] with inde-
pendent sampling of each frame. To reduce complexity for large
image sizes, we split each frame into non-overlapping blocks. Each
block is independently sampled in the DCT domain to reduce com-
plexity. The first frame in the sequence is compressively sampled [2]
block-by-block and recovered at the decoder using OMP. Each next
frame is compressively sampled and recovered using Alg. 1 where
Λ1 contains S ≤ K positions of the most significant elements in the
spatially corresponding block of a previous frame. Thus a previous
frame plays the role of side information.

Since the subsequent frames are correlated, reduced complexity,
in terms of lower number of iterations and/or better reconstruction
quality is expected. Note that the performance improvement will
depend on the motion in the scene. For scenes with slow motion,
several frames can use the same side information frame.

We follow the same principle in the case of the single-image
acquisition for single-pixel imaging applications. We exploit spatial
correlation within the image and use previously recovered blocks as
side information. We split the image into non-overlapping blocks,
where the first block is compressively sampled [2] and recovered
at the decoder using OMP. Spatial correlation within an image is
exploited by recovering other blocks using an already reconstructed
neighboring block as side information.

The scheme straightforwardly applies to stereo image/video ac-
quisition, where one view can play the role of side information. We
note that it is possible to combine several neighboring blocks or
frames to generate better side information.

4. RESULTS

In our simulations, we set κ1 = 0.25 and κ2 = 0.00001 in Algo-
rithm 1, which empirically led to the best results. As usually done
in compressive imaging literature, we use images/video already ac-
quired at high resolution to simulate the effects if the data were ac-
quired compressively. This serves as a good indicator of how the
proposed method would perform in a real-world setup such as that
of [2, 5].

First, we use a 288×288 pixel image, which was originally ob-
tained using MRI, and then converted to the bmp file format (see
Fig.2). We set the block size to N = 32 × 32 = 1024 pixels.
This block size was observed to provide a good tradeoff between
CS efficiency, reconstruction complexity, and decoding time. We
use an M × N measurement matrix with random Bernoulli +1/-1
entries, which is more realistic in this scenario [2]. The first block
of the image was compressively sampled with M < 1024 random
measurements and recovered using OMP (without side information).
Each next block was sampled with M random measurements and re-
covered using the previous left neighbor as side information. The
results as peak signal-to-noise ratio (PSNR) of the average mean
square error (MSE) and the average number of iterations (over all
blocks) vs. M/N are shown in Fig. 1. The curve labeled No Side
Information denotes results obtained with independent recovery of
each block with OMP. We vary M in the range [400, 950] with a
step of 50 to obtain different sampling rates. We did not use all
significant positions in the side information block, but instead used
only the first S significant positions to better tradeoff complexity
and quality. As expected, as S increases, the number of iterations
decreases, since we rely more on side information. It can be seen
that S = 50 and S = 100 perform the best. At some sampling
points (e.g., M = 700) there is a significant quality improvement
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compared to the case without side information. When S = 200
the recovery is the fastest, but the obtained reconstruction is usually
worse than without side information. The reason why smaller S’s
perform better in this case is, because for high S many wrong posi-
tions are accepted at the start, and the algorithm cannot correct them
all. If the correlation among the blocks is higher, S can be higher (as
in the video example below).
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Fig. 1. (a) PSNR, (b) the average number of iterations, vs. sampling
rate for four different values of S and the image shown in Fig. 2.

No Side Information S=100

S=200 S=400

Fig. 2. MRI image recovered without side information (top left), and
with side information, M =400 measurements and three different
values of S.

One reconstruction example is shown in Fig. 2. We set the num-
ber of measurements per block to M = 400, which corresponds
to 39% of acquired samples. The image without side information
(OMP recovery) was reconstructed after 425 iterations, whereas the
images with side information were reconstructed after 341, 192, and
40 iterations, for S =100, 200, and 400, respectively. It can be
seen that in the result with the scheme without side information one
block is seriously damaged, which is not the case with the proposed
scheme though fewer number of iterations have been used.

Next, we simulate CS on the Y-component of the first nine frames
of QCIF “Akiyo” sequence. The first frame was compressively sam-
pled and recovered using OMP (without side information). It is then
used for recovery of all subsequent 8 frames. The results as PSNR
of the average MSE and the average number of iterations vs. the
frame number are shown in Fig. 3. Curves labeled No Side Informa-
tion denote results obtained with independent recovery of each frame

with OMP. Results are shown for M = 800 and M = 600 measure-
ments per block (similar results are obtained for different M ), which
correspond to 78% and 59% of acquired samples, respectively. We
always used all significant positions in the side information frame,
i.e., S = K. Roughly the same PSNR was obtained compared to the
No Side Information case, with significantly fewer number of itera-
tions for all frames. Note that due to slow motion of the “Akiyo”, it
is possible to use one frame as side information for a long sequence
of subsequent frames.
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Fig. 3. (a) PSNR, (b) the average number of iterations, vs. the frame
number for the “Akiyo” video sequence.

5. CONCLUSIONS AND FUTURE WORK

We propose the scheme for compressive imaging using the concept
of side information. The proposed concept of recovery with side in-
formation has potential to significantly reduce complexity and im-
prove performance of compressive image sampling by exploiting
spatial and temporal correlation within image/video.

One future task is to develop a new compression scheme that
should follow compressive image acquisition. Instead of using the
spatially corresponding blocks as side information, research can go
into the direction of performing different motion estimation tech-
niques to better predict block sparsity. The main challenge that still
remains is building a real-world system for compressive image/video
sampling based on the proposed methods.
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