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ABSTRACT
We propose a novel camera design for light field image acquisition
using compressive sensing. By utilizing a randomly coded non-
refractive mask in front of the aperture, incoherent measurements
of the light passing through different regions are encoded in the cap-
tured images. A novel reconstruction algorithm is proposed to re-
cover the original light field image from these acquisitions. Using
the principles of compressive sensing, we demonstrate that light field
images with high angular dimension can be captured with only a few
acquisitions. Moreover, the proposed design provides images with
high spatial resolution and signal-to-noise-ratio (SNR), and there-
fore does not suffer from limitations common to existing light-field
camera designs. Experimental results demonstrate the efficiency of
the proposed system.

Index Terms— Compressive sensing, light-fields, coded aper-
ture imaging, computational photography, Bayesian methods.

1. INTRODUCTION
Recent advances in computational photography provided effective
solutions to a number of photographic problems, and also resulted in
novel methods to acquire and process images. Light-field cameras
are one of the most widely used class of computational cameras. The
light-field expresses the radiance density function on the camera sen-
sor, or the light energy of all rays in 3D space passing through the
camera. For instance, a four-dimensional (4D) discrete light field
image x(i, k, m, n) with spatial dimensions i, k and angular dimen-
sions m,n contains images of a scene from a variety of angles, which
provide information about the 3D structure of the scene. The angu-
lar data provides means to work directly on the light-rays instead
of pixels, allowing one to produce many views of the scene, or per-
form many photographic tasks after the acquisition is made. This
provides a clear advantage for light-field imaging over traditional
photography and makes many novel applications possible.

A number of light-field camera designs is proposed in the liter-
ature. The most common ones are plenoptic cameras utilizing mi-
crolens arrays [1,2], multi-camera [3] or multi-lens systems [4], and
mask-based designs [5, 6]. Many of these designs suffer from the
spatio-angular tradeoff [4], that is, one cannot obtain light-field im-
ages with both high spatial- and high angular resolution. Recently, a
programmable aperture camera is proposed [7] which uses a coded
aperture to multiplex angular images into a single 2D image which
is then decoded using linear estimation. This design captures images
with both high spatial and angular resolution, but the number of ac-
quisitions is equal to the number of angular dimensions. Therefore,
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obtaining a light-field image with a high angular resolution is not
practical.

Compressive sensing (CS) [8,9], on the other hand, has recently
become very popular due to its interesting theoretical nature and
wide area of applications. The theory of compressive sensing dic-
tates that a signal can be recovered very accurately from a much
smaller number of measurements than required by traditional meth-
ods, provided that it is compressible or sparse in some basis, i.e.,
only a few basis coefficients contain the major part of the signal
energy. Besides sparsity, compressive sensing makes use of inco-
herent measurements and nonlinear reconstruction, and has led to
many interesting theoretical results and novel applications (see, for
instance, [10]).

In this paper, we present a novel application of compressive
sensing, namely, a new camera design for light-field image acqui-
sition. We build our design on ideas from coded aperture imaging,
computational photography and compressive sensing. By exploiting
the fact that different regions of the aperture correspond to images
of the scene from different angles, we incorporate a compressively
coded mask in front of the aperture to obtain incoherent measure-
ments of the incident light-field. These measurements are then de-
coded using a novel reconstruction algorithm to recover the original
light-field image. We exploit the highly sparse nature of the light-
field images to obtain accurate reconstructions with only a few mea-
surements compared to the high angular dimension of the light-field
image.

This paper is organized as follows: In Sec. 2 we present the pro-
posed acquisition method to obtain incoherent measurements of the
light field image. The Bayesian model utilized for the reconstruction
is described in Sec. 3, and the reconstruction algorithm is developed
in Sec. 4. We demonstrate the efficiency of the proposed system with
experimental results in Sec. 5 and conclusions are drawn in Sec. 6.

2. LIGHT FIELD ACQUISITION
The basic principle of the proposed light-field acquisition system is
the fact that different regions of the aperture capture images of the
scene from different angles. In other words, the main camera lens
can be interpreted as an array of multiple virtual lenses (or cameras).
This concept is illustrated in Fig. 1(a)-(c), where only certain parts
of the aperture are left open to acquire images exhibiting vertical and
horizontal parallax. By separately opening one region of the aperture
and blocking light in the others, the complete light-field with an an-
gular dimension of N can be captured with N exposures. However,
obtaining the light-field image in this fashion has two disadvantages:
First, due to the very small amount of light at each exposure, the
captured angular images have very low signal-to-noise ratios (SNR).
Second, a high number of acquisitions has to be made in order to
obtain high angular resolution. The programmable aperture camera
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(a) (b)
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Fig. 1. The basic principle of utilizing a coded aperture to obtain
light field images. The angular images are shown in (a), (b) and (c)
when only corner blocks of the aperture are left open. Both hori-
zontal and vertical parallax can be observed between these images
(Horizontal and vertical dashed lines are shown to clearly denote the
vertical and horizontal parallax, respectively). Figure (d) shows a
captured image with the randomly coded aperture used in the pro-
posed compressive sensing light field camera. All images are from a
synthetic light field image (see Sec. 5).

design in [7] addressed the first problem and increased the SNR in
each captured image through multiplexing, but it still suffers from
the second problem.

We address both of these issues by utilizing a randomly coded
non-refractive mask in front of the aperture. Each image acquired in
this fashion is a random linear combination (and therefore an inco-
herent measurement) of the angular images. An example image cap-
tured in this fashion is illustrated in Fig. 1(d), where the amount of
light passing through regions of the aperture are randomly selected
(shown at the bottom of Fig. 1(d)).

Let us assume that the aperture of the main camera lens is di-
vided into N blocks, with N = Nh × Nv where Nh and Nv rep-
resent the number of horizontal and vertical divisions. During each
acquisition i, each block j is assigned a weight 0 ≤ aij ≤ 1 which
controls the amount of light passing through this block. Therefore,
aij represents the transmittance of the block j, i.e., it is the fraction
of incident light that passes through the block. As mentioned above,
each block j captures an angular image xj in the light-field image,
and therefore the acquired image yi at the ith acquisition can be
represented as a linear combination of the N angular images as

yi =
N∑

j=1

aijxj , i = 1, . . . , M. (1)

Therefore, the measurements after M acquisitions (with M ≤ N )

can be expressed in matrix form as

⎛
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⎞
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⎛
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x1

x2
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xN

⎞
⎟⎟⎟⎟⎠ ,

(2)

where I is the P ×P identity matrix with P the number of pixels in
images xj (and therefore, in yi). Taking the acquisition noise also
into account, the final observation model can be expressed as

y = Ax + n . (3)

It is clear that the light field acquisition system in (3) can be seen as a
noisy incoherent measurement system, when the linear measurement
matrix A satisfies certain properties dictated by the theory of com-
pressive sensing [8]. The design of the measurement matrices for
compressive sensing is an active area of research, and many of the
existing designs can be utilized for the proposed aperture mask. In
this work, the entries of A are drawn from random distributions. For
instance, if the mask is limited to binary codes, scrambled Hadamard
ensembles can be used to code the aperture [11]. A more general
class of matrices can be utilized in cases where fractional values of
the block transmittances are permitted.

Finally, it should be noted that since many (or possibly all)
blocks are open in each exposure, each captured image has a high
SNR due to the small amount of loss of light. In fact, the measure-
ment matrices can be designed to optimize the amount of passing
light while maintaining the random structure. Note that the tradi-
tional camera is a special case of the system in (3) with M = 1 and
a11 = a12 = . . . = a1N = 1, in which case the SNR is maximized,
but the 3D structure is lost.

3. BAYESIAN MODEL FOR RECONSTRUCTION
In order to be able to reconstruct the angular images x1,x2, . . . ,xN

from the incoherent measurements y1,y2, . . . ,yM and A, we uti-
lize a Bayesian framework by employing a conditional distribution
p(y|x, β) for the observation model in (3) and a prior distribution
p(x|αTV, αc) on the unknown light field image x. These distribu-
tions depend on the model parameters β, αTV and αc, which are
called hyperparameters and are also modeled within the proposed
framework. We utilize the following factorization of the joint distri-
bution p(y,x, β, αTV, αc) of all unknown and observed quantities

p(y,x, β, αTV, αc) = p(y|x, β) p(x|αTV, αc)p(β)p(αTV)p(αc)
(4)

In this work, the hyperparameters β, αTV, and αc are modeled by
uniform distributions. The specific models utilized for the rest of the
distributions are presented in the following subsections.

3.1. Observation (Noise) Model

The observation noise is assumed to be independent and Gaussian
with zero mean and variance equal to β−1, that is, using (3),

p(y|x, β) = N (y|Ax, β−1). (5)

3.2. Light-Field Image Model

The choice of randomly programmed coded apertures makes the ex-
act/approximate recovery of angular images possible through the use
of sparsity inherent in light field images. There are multiple sources
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of sparsity within light field images that can be exploited. The first
one is sparsity within each angular image. It is already well known
that 2D images can be very accurately represented by only a few co-
efficients of a sparsifying transform, such as wavelet transforms or
total-variation (TV) functions on the image. In the case of light-field
images, there is another fundamental source of sparsity, that is, the
angular images are very closely related to each other. Specifically,
each angular image can be accurately estimated from another one
using dense warping (or correspondence) fields.

Based on the above, we utilize the following factorization of the
prior distribution ln p(x|αTV, αc) = ln p(x|αTV) + ln p(x|αc) +
ln C(αTV, αc), where p(x|αTV) is the TV image prior employed
on each angular image separately, p(x|αc) is the prior modeling
the sparsity arising from the strong dependency between angular im-
ages and C(αTV, αc) is a function of the unknown hyperparameters
needed for the image prior model to integrate to one.

Specifically, p(x|αTV) can be expressed as

p(x|αTV) ∝
N∏

i=1

(
αi

TV

)P/2

exp

[
−1

2
αi

TVTV(xi)

]
, (6)

where

TV(xi) =
∑

k

√
(Δh

k(xi))2 + (Δv
k(xi))2, (7)

where Δh
k and Δv

k correspond to, respectively, horizontal and ver-
tical first order differences, at pixel k, that is, Δh

k(xi) =
(
xi

)
k
−(

xi
)

l(k)
and Δv

k(xi) =
(
xi

)
k
− (

xi
)

a(k)
, where l(k) and a(k)

denote the nearest neighbors of pixel k, to the left and above, re-
spectively.

Next, let us denote by Mkj the dense warping field between the
images xk and xj , that is, xk ≈ Mkjxj . This dependency of each
angular image on another is very strong and can be exploited while
modeling x. Therefore, we utilize the following cross-image prior
between the angular images

p(x|αc) ∝ exp

⎛
⎝ N∑

k=1

∑
j∈N (k)

−αkj
c

2
‖ xk − Mkjxj ‖2

⎞
⎠ , (8)

where N (k) denotes the angular images in the neighborhood of xk.
We define the neighborhood as images one angular dimension apart
to reduce the computational complexity and to use accurate warping
fields. The cross-image prior in (8) can be written in matrix-vector
form as

p(x|αc) ∝ exp(−1

2
xT Πx), (9)

where the matrix Π is a sparse NP × NP matrix constructed by
N × N blocks of size P × P . Specifically, it is given by

Π =

⎛
⎜⎜⎜⎝

Π11 Π12 . . Π1N

Π21 Π22 . . Π2N

. . . . .

. . . . .
ΠN1 ΠN2 . . ΠNN

⎞
⎟⎟⎟⎠ (10)

The P × P blocks Πkj can be found from (8) as

Πkj =

⎧⎪⎨
⎪⎩

∑
s∈N (k) αks

c I + αsk
c

(
Msk

)T
Msk if j = k

−αkj
c Mkj − αjk

c

(
Mjk

)T
if j �= k, j ∈ N (k)

0 else

It is clear that incorporating the cross-image prior requires
knowledge of the dense warping fields Mjk, which cannot be di-
rectly obtained from the compressive measurements. In this work,
we overcome this problem by acquiring two additional images from
two opposite sides of the aperture. These images exhibit full hori-
zontal and vertical parallax, and a dense registration algorithm based
on graph-cuts is utilized to obtain the warping field [12]. Due to
the uniform partitioning of the aperture, this warping field can be
used to obtain approximate intermediate warping fields between all
angular images.

4. RECONSTRUCTION ALGORITHM
Utilizing the joint distribution in (4), we obtain the maximum a pos-
teriori estimate of the light field image x as

x̂ = Σx βAT y (11)

Σ−1
x = diag

(
αi

TV(Δh)
t
Wi

TV(Δh) + αi
TV(Δv)tWi

TV(Δv)
)

+ Π

(12)

where the first matrix term in (12) is a NP × NP block diag-

onal matrix created by P × P blocks αi
TV(Δh)

t
Wi

TV(Δh) +
αi

TV(Δv)tWi
TV(Δv). The matrices Wi

TV are calculated by

Wi
TV = diag

⎛
⎝ 1√

(wi
TV)

k

⎞
⎠ , k = 1, . . . P (13)

where (
wi

TV

)
k

= (Δh
k(x̂i))2 + (Δv

k(x̂i))2. (14)

In this work we use the following estimates of the hyperparam-
eters

β =
NP

‖ y − Ax̂ ‖2
, (15)

αi
TV =

1
2
P∑

k

√
(wi

TV)k

, (16)

αij
c =

P

‖ x̂i − Mijx̂j ‖2
. (17)

In calculating (16) we have used the quadratic bound provided by
the majorization-minimization approach proposed in [13].

Finally, the algorithm iterates among estimating the light field
image using (11), the spatial adaptivity vectors using (14), and the
hyperparameters using (15)-(17) until convergence.

5. EXPERIMENTAL RESULTS
For the results reported in this paper, we generated a synthetic light-
field image shown in Fig. (1) with known warping fields. The light
field image has a spatial resolution of 250 × 125 and an angular
resolution of 7×7. As the measurement matrix A we chose the uni-
form spherical ensemble, that is, its entries are drawn from a uniform
distribution and are between 0 and 1. Since the mean of this distri-
bution is 0.5, using this measurement matrix, the expected amount
of light passing through the aperture in each acquisition is half of the
maximum possible. Finally, we add zero-mean Gaussian noise with
variance 0.1 to the measurements to obtain the final observations.

We vary the number of acquired images M from 1 to 49 and ap-
ply the proposed reconstruction algorithm using the incoherent ob-
servations to obtain estimates of the original light-field image. Each
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Fig. 2. Number of measurements M vs relative reconstruction error
(average over 50 runs).

experiment is repeated 50 times and the average is reported. The re-
construction error is calculated according to ‖ x̂ − x ‖2

2 / ‖ x ‖2
2,

where x and x̂ are the original and estimated images, respectively.

Average reconstruction errors over 50 runs are shown in Fig. (2).
It is clear that very accurate reconstructions can be obtained using
very few measurements. The minimum reconstruction error that can
be achieved is around 0.5 × 10−5 with 49 measurements, due to
the presence of observation noise. The proposed algorithm provides
average reconstruction errors of around 1 × 10−4 and 1.5 × 10−5

from 11 and 21 measurements, respectively. In fact, an average error
of 6×10−4 is already obtained with only 7 measurements. Examples
of reconstructed images using 11 and 21 measurements are shown
in Fig. 3(b) and Fig. 3(c), respectively. Note that the reconstructed
images are nearly indistinguishable from the original image, which
is shown in Fig. 3(a). It can be observed that using the proposed
design the number of acquisitions can be significantly reduced (by a
factor between 1/7 to 1/4). Furthermore, the reduction in the number
of acquisitions is expected to be much higher with larger light-field
images, due to the increased level of sparsity.

The proposed light-field camera design is also implemented us-
ing an SLR camera and a liquid crystal array as the spatial light
modulator. We obtained promising real-image results which will be
reported in the future.

6. CONCLUSIONS

In this paper, we proposed a novel application of compressive sens-
ing to a novel camera design to acquire 4D light-field images. We
have shown that incoherent measurements of the angular images can
be collected by using a randomly coded mask in front of the aperture
of a traditional camera. These measurements are then used to recon-
struct the original light field image. We developed a reconstruction
algorithm which exploits the high degree of sparsity inherent in the
light field images, and have shown that the complete light field im-
age can be reconstructed using only a few acquisitions. Moreover,
the captured images have high signal-to-noise ratios due to small
amount of loss of light. The proposed design provides high spatial
and angular resolution light field images, and does not suffer from
limitations of many existing light field images. Finally, the proposed
design can be implemented by simple modifications of traditional
cameras.

(a)

(b) (c)

Fig. 3. Reconstruction examples. (a) Original angular image, recon-
structed images from (b) 11 measurements (relative reconstruction
error = 3.4 × 10−4) and (c) 21 measurements (relative reconstruc-
tion error = 1.4 × 10−5).
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