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ABSTRACT

The railway maintenance is a particular application context 
required in order to prevent any dangerous situation.  

With the growing of the high-speed railway traffic, automatic 
inspection systems able to detect rail defects, sleepers’ anomalies, 
as well as missing fastening elements, become strategic since they 
could increase the ability in the detection of defects and reduce the 
inspection time in order to guarantee more frequent maintenance of 
the railway network.  

This paper presents a patented fully automatic and 
configurable real-time vision system able to detect the 
presence/absence of the fastening bolts that fix the rails to the 
sleepers. It gets an accuracy of 99.9%, and, thanks to its parallel 
processing allowed by a Graphic Processing Unit, reaches an 
average throughput of 187 km/h, speeding up of about 287 % the 
performance of a quadcore CPU implementation.  
 

Index Terms—Visual Inspection, Pattern Recognition, 
General Purpose Graphical Processing Unit.

1. INTRODUCTION 
 
The railway maintenance is a particular application context usually 
performed by trained personnel that, periodically, walks along the 
railway network searching for visual anomalies. Actually, this 
manual inspection is slow, laborious and potentially hazardous, 
since its results are strictly dependent on the observer's capability 
in detecting possible anomalies and in recognizing critical 
situations.  

Even if some semi-automatic tools have been proposed (such 
as track profile measurement [1], obstruction detection [2], braking 
control [3], etc.), at the best of our knowledge, the only found 
approaches to the fastening elements recognition are commercial 
vision systems [4] which consider only fastening elements having 
shape with regular geometry, being bounded by their geometrical 
approaches to resolve the problem. Moreover, these systems are 
strongly interactive. In fact, in order to reach the best 
performances, they require a human operator for tuning any 
threshold. When a different kind of fastening element is 
considered, the tuning phase has to be re-executed.  

In this scenario, we propose a completely automatic system 
for the railway inspection and the fastening bolts detection which 
needs no tuning phase. The human operator has only the task of 
selecting images of the fastening elements to manage. Moreover, it 
requires no constraints on the shape of the fastening elements, 
being suitable for both geometric and generic shapes. 

The inspection system is briefly presented in the next 

paragraph. A more detailed description of the bolts detection 
strategy is reported in paragraph 3. Paragraph 4 describes the 
computing environment and the parallel implementation. Accuracy 
and computing performance are reported in paragraph 5. 
 

2. SYSTEM OVERVIEW 
 
Our system acquires images of the rail by means of a DALSA 
PIRANHA 2 line scan camera [5] having 1024 pixels of resolution 
(maximum line rate of 67 kLine/s), provided with a PC-
CAMLINK frame grabber (Imaging Technology CORECO) [6] 
and using the Cameralink protocol [7]. In order to reduce the 
effects of variable natural lighting conditions, an appropriate 
illumination setup equipped with six OSRAM 41850 FL light 
sources has been installed making the system robust against 
changes in the natural illumination. The data acquisition is 
synchronized thanks to a wheel encoder triggering the line scan 
camera. By this way, independently from the train velocity, the 
resolution results along y (main motion direction) in 3 mm/pixel, 
and along the orthogonal direction x in 1 mm/pixel. The 
acquisition system has been installed under a diagnostic train. 

The detection of the bolts is performed by a Prediction 
Module (PM) and a Bolt Detection Module (BDM) cooperating 
according the strategy described in paragraph 3. In doing this, they 
need the coordinate of the center of the rail-head xc, that is detected 
and tracked by a Rail Detection and Tracking Module (RD&TM). 

RD&TM does not operate in continuous, being called by the 
system only when the synchronism in founding the bolts fails and 
the system exits from the "jumping search" (see paragraph 3.1): in 
fact, a fault bolt detection indicates that the rail-head might need of 
being re-tracked. This module employs Principal Components 
Analysis followed by a Multi Layer Perceptual Network Classifier 
(MLNPC). Firstly, a vector of 400 pixels, extracted from a row of 
the video sequence and centered on the last detected xc is 
multiplied by twelve different eigenvectors. The twelve 
coefficients generated by these scalar products are classified by a 
MLPNC which reveals if the processed vector is still centered on 
the rail head. In that case, the value of xc is confirmed. 
Contrariwise, the module iterates the algorithm suitably shifting 
along x (alternately on left and on right) the previously processed 
vector, until a newly determined value can update xc. 
 

3. BOLTS DETECTION 
 

Usually two kinds of bolts are used to secure the rail to the 
sleepers: hook bolts and hexagonal-headed bolts (Fig. 1). 

They essentially differ by shape: the first one has a more 
complex hook shape and can be found oriented only in one  
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Fig. 1. Examples of fastening elements: hexagonal headed bolts, 
right hook bolts and left hook bolts. Resolutions along x and y are 
different because of the acquisition setup. 
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Fig. 2. Geometry of a rail. A correct expectation for xc, Dx and Dy 
notably reduces the computational load.  
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Fig. 3. Detected couples of bolts vs examined lines in a video 
sequence, when jumping search is disabled (i.e., analyzing 
indiscrimnately each line of the video sequence, without jumping 
between couples of detected bolts). From the top: Daubechies 
Classifier, Haar Classifier, double validation.  
 
direction, the second one has a regular hexagonal shape with 
random orientation. Moreover, the hexagonal bolts allow 
geometrical approaches, but present similarity with the shape of 
the stones that are on the background, causing miss-classification. 

Our system successfully detects both of them, since it is based 
on MLPNCs and consists of a prediction phase, identifying the 
image areas (frames) candidate to contain the patterns to be 
detected; a data reduction phase, reducing the computational load 
thanks to DWT; and a classification phase, revealing the 
presence/absence of the fastening elements. 
 
3.1. Prediction Phase  

In the rail structure, the distance Dx between rail and fastening 
elements is constant and a priori known. Similarly, the distance Dy 
between two adjacent couples of fastening elements is constant, 
though with a less precise approximation (see Fig. 2).  

Exploiting this geometry, PM speeds-up the processing 
alternately using two kinds of search: "Exhaustive search" and 
"Jumping search". 

In the first kind of search, a window exhaustively slides on 
the areas distant Dx from xc until the first occurrence of the left and 
of the right fastening elements are detected "contemporaneously" 
(at the same y). At this point, the y coordinate of this couple of 
bolts (y1) is stored, and the system may continue until it finds the 
second couple (coordinate y2). Now, it sets Dy = y2 - y1 and 
switches the process on the Jumping search, using Dy in order to 
directly jump in those areas candidate to enclose the fastening 
elements, saving computational time. If, during the Jumping 
search, the fastening elements are not found in the position where 

they were predicted, then the system writes the position of the fault 
in a log-file, calls RD&TM for updating xc, and restarts the 
Exhaustive search.  

3.2. Data Reduction Phase  

In pattern recognition, input images are generally pre-processed in 
order to extract their intrinsic features. For reducing the input 
space to the classifiers, we have found a features extraction 
algorithm able to concentrate all the important information on the 
input patterns in a small set of coefficients. This algorithm has 
been developed considering 2-D DWTs [8], since DWT 
concentrates the significant variations of input patterns in a 
reduced number of coefficients. We have tested different DWTs 
varying the number of decomposition levels, in order to reduce this 
set, without lose accuracy. Specifically, we have chosen both a 
compact wavelet introduced by Daubechies [8], and the Haar 
DWT (also known as Haar Transform, [9]) since we have verified 
that, for our specific application, the combined use of these two 
approaches avoids -almost completely- the false positive detection. 

The best compromise has been reached by the Lowpass-
Lowpass subband at the 2nd decomposition level (say, LL2) 
consisting only of 6x25 coefficients. Therefore, BDM computes 
LL2 of a Haar DWT and, if these are positively classified by HC 
(see paragraph 3.3), then BDM produces also LL2 of a Daubechies 
DWT, in order to perform a second validation. In fact, we have 
found that the double classification strategy described in the 
following paragraph, gets an accuracy of 99.9% in recognizing 
bolts in the primitive windows, practically at-all avoiding false 
positive detection. 

3.3. Classification Phase  

BDM employs two MLPNCs, say DC and HC. They were trained 
respectively for Daubechies DWT and Haar DWT using Error 
Back Propagation algorithm with an adaptive learning rate 
[Bishop (1995)] based on 391 positive examples of hexagonal-
headed bolts with different orientations, and 703 negative 
examples consisting of 24x100 pixels windows extracted from the 
video sequence. DC and HC have an identical three-layers 
topology 150:10:1 and differ only for the weights.  

To detect a presence of the bolt, the outputs from DC and HC 
are combined according to a logical AND. In fact, during the 
development of our system, we observed that though a 
discrimination based on Daubechies DWT reached a very high 
detection rate, it also produced a certain number of False Positives 
(FPs) during the Exhaustive search.  

In order to reduce these errors, a “double validation” strategy 
was introduced. Because of its very low computational overhead, 
the Haar DWT was also taken into account designing and training 
HC, a neural classifier working on its LL2 subband. HC reached 
the same detection rate of DC, though revealing much more FPs.  
Nevertheless, we observed that the FPs resulting from HC were 
originated from different frames than those causing the FPs 
revealed by DC. 

This phenomenon is put in evidence by Fig. 3, where a spike 
denotes a detection (indifferently true or false) at a certain 
examined line of the video sequence. As it is evidenced, only 2 
FPs over 4,500 analyzed lines (90,000 processed frames) have 
resulted by the double validation obtained by the logical AND 
between DC and HC.  
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Fig. 4. Nvidia G80: Block Diagram (a); SPs and texture units (b); 
Thread batching of the described system (c). 
 
// Initialization   
cublasSetVector(800,sizeof(float),iSVDPatch,1,SVDPatch,1); // CL 
SplitCol<<<401,401,2000>>>(SVDPatch,SVDPatchParte_L);  // CK 
ReplicateCol<<<401,12,200>>>(FilterxMean,FilterxMean_L); // CK 
ReplicateCol<<<401,8,100>>>(HiddCoeff_bias,HiddCoeff_bias_L);// CK 
ReplicateCol<<<401,1,30>>>(LastCoeff_bias,LastCoeff_bias_L);// CK 
// Processing  
cublasSgemm('n','n',12,401,401,1.0,Filtro_,12,SVDPatchParte_L,401, 
   -1.0,FilterxMean_L,12);   // CL  
cublasSgemm('n','n',8,401,12,1.0,HiddenCoeff_,8,FilterxMean_L,12,1.0,
   HiddenCoeff_bias_L,8);  // CL  
Sigmoid<<<401,8,100>>>(HiddenCoeff_bias_L,ldata_L);   // CK 
cublasSgemm('n','n',1,401,8,1.0,LastCoeff_,1,ldata_L,8,1.0, 
   LastCoeff_bias_L,1);    // CL  
Sigmoid<<<401,1,30>>>(LastCoeff_bias_L,ldata_L); // CK 
ris[0] = (double)cublasIsamax( 401 , ldata_L , 1 );   // CL 
// Initialization 
cublasSetVector(1500,sizeof(float),iHiddenCoeff,1,HiddenCoeff,1); // CL 
cublasSetVector(10,sizeof(float),iLastCoeff,1,LastCoeff,1); // CL 
cublasSetVector(4272,sizeof(float),iHAARPatch,1,HAARPatch,1); // CL 
// Processing: HAAR  
dim3 block(4,4); 
dim3 grid(1000,6); 
HAAR2D<<<grid,block>>>(HAARPatch,odata); // CK 
// Processing: MLNPC 
ReplicateCol<<<40,10,50>>>(HiddenCoeff_bias, 
   HiddenCoeff_bias_L); // CK 
ReplicateCol<<<40,1,5>>>(LastCoeff_bias,LastCoeff_bias_L); // CK 
cublasSgemm('n','n',10,40,150,1.0,HiddenCoeff,10,odata,150, 
   1.0,HiddenCoeff_bias_L,10); // CL 
Sigmoid<<<40,10,50>>>(HiddenCoeff_bias_L,udata); // CK 
cublasSgemm('n','n',1,40,10,1.0,LastCoeff,1,udata,10, 
   1.0,LastCoeff_bias_L,1); // CL 
Sigmoid<<<40,1,5>>>(LastCoeff_bias_L,risultato); // CK 
// Write Results 
cublasGetVector(40,sizeof(float),risultato,1,Ris,1); // CL 
Fig. 5. Extracted code from RD&TM (top) and BDM (down) 
modules. CL: CUBLAS Library; CK: CUDA Kernel. 

 
4. GPU-BASED PARALLEL IMPLEMENTATION 

 
The most relevant computational tasks of the system are those of  
RD&TM and BDM. Nevertheless, they mainly consist of 

algorithms (i.e. SVD, Haar and Daubechies DWTs, MLNPC), 
which are implicitly parallel and can easily exploit a SIMD 
implementation on dedicated hardware. Therefore, in order to 
reach a high throughput and real-time video analysis, we have 
adopted a NVIDIA 2-Way SLI, a device provided with two 
Graphical Processing Units (GPUs) GeForce 8800 Ultra, working 
in SLI (Scalable Link Interface) mode.  

The GeForce 8800 Ultra [10], as shown in Fig. 4.a, contains 
128 stream processors (also called shader processors, SPs) 
arranged into 8 clusters of 16 processors. The processors within the 
same cluster share the same L1 cache and (if required by the 
computation) may access the L1 cache of other clusters through a 
bus. The L2 cache is arranged into 6 partitions, each having a 64-
bit interface to graphic memory, with a total width of 384 bits. 
Moreover, (see Fig. 4.b) each cluster of SP shares 4 texture address 
units (TA units) and 8 texture filtering units (TF units). TA units 
are completely decoupled from the SP, meaning that it’s possible 
access them while SPs perform other operations, even using 
different clock frequencies. Embedded buffers store the output of 
the SP and can be quickly read by another SP for subsequent 
processing. This allows SIMD instructions to be "sistolically" 
implemented across clusters of stream processors.  

In order to better exploit this device, we have adopted the 
technology CUDA™ (compute unified device architecture) [11] 
based on the C programming language. When programmed 
through CUDA, the GPU is viewed as a computing device capable 
of executing a very high number of threads in parallel. It operates 
as a coprocessor to the main CPU: a portion of an application that 
is executed many times, but independently on different data, can 
be isolated into a function that is executed on the device as many 
different threads.  

Moreover, because of their algorithmic nature, we have 
optimized the kernels computing SVD and MLNPC including 
CUBLAS library [12], an efficient implementation of BLAS 
(Basic Linear Algebra Subprograms), which allows access to the 
computational resources of NVIDIA GPUs.  

The modules computing SVD, Haar/Daubechies DWTs, and 
MLNPC have been implemented in custom ".cu" CUDA files. 
These files, as evidenced by a scheme in Fig. 4.c and an 
exemplificative code shown in Fig. 5, consist of a part based on 
custom CUDA kernels (labels KC), and another part based on 
CUBLAS library (labels CL). 
Any call to a CUDA kernel must specify the execution 
configuration for that call. This configuration appears in the form 
<<<dimGrid, dimBlock[, numBytes] [, associatedStream]>>> 
between the function name and the parenthesized argument list, 
where dimBlock and dimGrid specify how the resulting data 
stream is partitioned (i.e., into a grid composed by dimGrid blocks, 
each one having dimBlock elements, representing the threads), 
numBytes and associatedStream are optional arguments, 
respectively specifying the bytes of shared memory that the call 
dynamically allocates per each block in addition to the statically 
allocated memory, and the associated stream (both of them default 
0). For instance, the call "ReplicateCol<<<401,12, 200>>>(...)" 
partitions its computing into a grid of 401 blocks, each one having 
12 threads and 200 bytes of additional dynamic memory; while the 
lines "dim3 block(4,4);", "dim3 grid(1000,6);" and "HAAR2D 
<<<grid,block>>>(...);" configure the call to HAAR2D with a grid of 
1000x6 blocks, each one mapped in 4x4 threads. Anyhow, CUDA 
standardizes the maximum number of threads per block  
(dimBlock 512) and of blocks (dimGrid 65,535). 
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Fig. 6. Monitor. At the moment of this snapshot, the detection of 
left and right bolts is signaled. 
 

Processed lines  3,032,432 [lines] 9.097 [km]
Elapsed time (e.t.) 175.37 [sec]  
Throughput (t.p.)  17,292 [lines/sec] 186.75[km/h]
Jumped lines  2,980,012 [lines] 98.27 % 
Jumping search e.t. 117.70 [sec] 67.12 % 
Jumping search t.p. 25,319[lines/sec] 273.45[km/h]
Exhaustive lines 52,420 [lines] 1.73 %
Exhaustive search e.t. 57.67 [sec] 32.88 %
Exhaustive search t.p. 909 [lines/sec] 9.82 [km/h] 

Table 1. Obtained Performance.  
 

The produced ".cu" files have been translated by the nvcc 
CUDA compiler [13] using the NVIDIA script NVMEX [14], a 
command which translates CUDA files into executable files 
(".mexw64" or ".mexw32") that can be directly called from 
MatLab, as if they were MATLAB built-in functions. 

We have chosen MatLab as target environment for our system 
not only because it allocates matrices in memory coherently as 
CUBLAS does (i.e., by columns, contrarily as C compilers that 
works by rows), but also for exploiting the debugging and the fast 
prototyping facilities, as well as the efficient tools for creating 
graphic interfaces provided by MatLab (see Fig. 6). 

 
5. ACCURACY AND COMPUTING PERFORMANCE 

Accuracy in detecting the presence/absence of bolts was measured 
over a sequence covering more than 9 kilometers of railway and 
containing 3,350 hexagonal bolts. The system detected 99.9% of 
the visible bolts, 0.1% of the partially occluded bolts and 95% of 
the absences (Table 1).  

The recognition rate resulted even more accurate using as 
benchmark a sequence of more than 6 kilometers containing 3,200 
hook bolts: in this case, the detection of both absent and present 
elements was 100%, getting also an acceptable detection rate more 
affordable than in case of partially occluded hexagonal bolts (47% 
and 31% respectively for left and right), which makes the system. 
This higher accuracy is justified since the hexagonal shape causes 
more frequent miss classifications because of their similarity with 
the stones on the background.  

Thanks to its parallel implementation, the obtained 
throughput (measured disabling the display) resulted 187 km/h. 
This one, compared to the throughput obtained on a Dual Quad-
Core AMD Opteron™ Processor 2352 (8 CPUs) clocked at 2.11 
GHz with 8 GB of RAM, represents a speed-up of 287 %, meaning 
a 23x speedup with respect to a single CPU. 
 

6. CONCLUSION AND FUTURE WORK 

This paper has proposed a visual system able to detect the bolts 
that secure the rail to the sleepers.  
The implemented prediction module and the GPU-based parallel 
implementation allow to speed up the system performance in terms 
of the inspection velocity: the system analyses video at 273 km/h 
(Jumping phase) and at 10 km/h (Exhaustive phase), reaching a 
composite throughput of 187 km/h, for the considered benchmark. 
If the system remains in the Jumping phase for longer time, 
performance can increase subsequently. Next work can be 
addressed in this direction, for example, automatically skipping 
those areas where the fastening elements are covered by asphalt 
(i.e., level crossing, where Exhaustive phase is executed in 
continuous).  

Obviously, the easy portability of the system onto more 
powerful computing solutions (e.g., the teraflop many-core 
processor NVIDIA Tesla provided with 960 cores per processor) 
can assure even higher throughput. 

However, also considering the current performance, the 
proposed system constitutes a significant aid to the railway safety 
issue, since its high reliability, robustness, accuracy and computing 
performance allow a more frequent maintenance of the entire 
railway network. 
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