
A GPU-BASED VISION SYSTEM FOR REAL TIME DETECTION
OF FASTENING ELEMENTS IN RAILWAY INSPECTION

P. De Ruvo1, A. Distante1, E. Stella1, and F. Marino2

1 Istituto di Studi sui Sistemi Intelligenti per l'Automazione (ISSIA) CNR, ITALY
2 Dipartimento di Elettrotecnica ed Elettronica (DEE), Politecnico di Bari, ITALY

ABSTRACT

The railway maintenance is a particular application context
required in order to prevent any dangerous situation.

With the growing of the high-speed railway traffic, automatic
inspection systems able to detect rail defects, sleepers’ anomalies,
as well as missing fastening elements, become strategic since they
could increase the ability in the detection of defects and reduce the
inspection time in order to guarantee more frequent maintenance of
the railway network.

This paper presents a patented fully automatic and
configurable real-time vision system able to detect the
presence/absence of the fastening bolts that fix the rails to the
sleepers. It gets an accuracy of 99.9%, and, thanks to its parallel
processing allowed by a Graphic Processing Unit, reaches an
average throughput of 187 km/h, speeding up of about 287 % the
performance of a quadcore CPU implementation.

Index Terms—Visual Inspection, Pattern Recognition,
General Purpose Graphical Processing Unit.

1. INTRODUCTION

The railway maintenance is a particular application context usually
performed by trained personnel that, periodically, walks along the
railway network searching for visual anomalies. Actually, this
manual inspection is slow, laborious and potentially hazardous,
since its results are strictly dependent on the observer's capability
in detecting possible anomalies and in recognizing critical
situations.

Even if some semi-automatic tools have been proposed (such
as track profile measurement [1], obstruction detection [2], braking
control [3], etc.), at the best of our knowledge, the only found
approaches to the fastening elements recognition are commercial
vision systems [4] which consider only fastening elements having
shape with regular geometry, being bounded by their geometrical
approaches to resolve the problem. Moreover, these systems are
strongly interactive. In fact, in order to reach the best
performances, they require a human operator for tuning any
threshold. When a different kind of fastening element is
considered, the tuning phase has to be re-executed.

In this scenario, we propose a completely automatic system
for the railway inspection and the fastening bolts detection which
needs no tuning phase. The human operator has only the task of
selecting images of the fastening elements to manage. Moreover, it
requires no constraints on the shape of the fastening elements,
being suitable for both geometric and generic shapes.

The inspection system is briefly presented in the next

paragraph. A more detailed description of the bolts detection
strategy is reported in paragraph 3. Paragraph 4 describes the
computing environment and the parallel implementation. Accuracy
and computing performance are reported in paragraph 5.

2. SYSTEM OVERVIEW

Our system acquires images of the rail by means of a DALSA
PIRANHA 2 line scan camera [5] having 1024 pixels of resolution
(maximum line rate of 67 kLine/s), provided with a PC-
CAMLINK frame grabber (Imaging Technology CORECO) [6]
and using the Cameralink protocol [7]. In order to reduce the
effects of variable natural lighting conditions, an appropriate
illumination setup equipped with six OSRAM 41850 FL light
sources has been installed making the system robust against
changes in the natural illumination. The data acquisition is
synchronized thanks to a wheel encoder triggering the line scan
camera. By this way, independently from the train velocity, the
resolution results along y (main motion direction) in 3 mm/pixel,
and along the orthogonal direction x in 1 mm/pixel. The
acquisition system has been installed under a diagnostic train.

The detection of the bolts is performed by a Prediction
Module (PM) and a Bolt Detection Module (BDM) cooperating
according the strategy described in paragraph 3. In doing this, they
need the coordinate of the center of the rail-head xc, that is detected
and tracked by a Rail Detection and Tracking Module (RD&TM).

RD&TM does not operate in continuous, being called by the
system only when the synchronism in founding the bolts fails and
the system exits from the "jumping search" (see paragraph 3.1): in
fact, a fault bolt detection indicates that the rail-head might need of
being re-tracked. This module employs Principal Components
Analysis followed by a Multi Layer Perceptual Network Classifier
(MLNPC). Firstly, a vector of 400 pixels, extracted from a row of
the video sequence and centered on the last detected xc is
multiplied by twelve different eigenvectors. The twelve
coefficients generated by these scalar products are classified by a
MLPNC which reveals if the processed vector is still centered on
the rail head. In that case, the value of xc is confirmed.
Contrariwise, the module iterates the algorithm suitably shifting
along x (alternately on left and on right) the previously processed
vector, until a newly determined value can update xc.

3. BOLTS DETECTION

Usually two kinds of bolts are used to secure the rail to the
sleepers: hook bolts and hexagonal-headed bolts (Fig. 1).

They essentially differ by shape: the first one has a more
complex hook shape and can be found oriented only in one

2333978-1-4244-5654-3/09/$26.00 ©2009 IEEE ICIP 2009

Fig. 1. Examples of fastening elements: hexagonal headed bolts,
right hook bolts and left hook bolts. Resolutions along x and y are
different because of the acquisition setup.

Dy

Dx Dx

Left
Bolts Right

Bolts

xc

Fig. 2. Geometry of a rail. A correct expectation for xc, Dx and Dy
notably reduces the computational load.

examined lines

DC

HC

DC &
HC

Fig. 3. Detected couples of bolts vs examined lines in a video
sequence, when jumping search is disabled (i.e., analyzing
indiscrimnately each line of the video sequence, without jumping
between couples of detected bolts). From the top: Daubechies
Classifier, Haar Classifier, double validation.

direction, the second one has a regular hexagonal shape with
random orientation. Moreover, the hexagonal bolts allow
geometrical approaches, but present similarity with the shape of
the stones that are on the background, causing miss-classification.

Our system successfully detects both of them, since it is based
on MLPNCs and consists of a prediction phase, identifying the
image areas (frames) candidate to contain the patterns to be
detected; a data reduction phase, reducing the computational load
thanks to DWT; and a classification phase, revealing the
presence/absence of the fastening elements.

3.1. Prediction Phase

In the rail structure, the distance Dx between rail and fastening
elements is constant and a priori known. Similarly, the distance Dy
between two adjacent couples of fastening elements is constant,
though with a less precise approximation (see Fig. 2).

Exploiting this geometry, PM speeds-up the processing
alternately using two kinds of search: "Exhaustive search" and
"Jumping search".

In the first kind of search, a window exhaustively slides on
the areas distant Dx from xc until the first occurrence of the left and
of the right fastening elements are detected "contemporaneously"
(at the same y). At this point, the y coordinate of this couple of
bolts (y1) is stored, and the system may continue until it finds the
second couple (coordinate y2). Now, it sets Dy = y2 - y1 and
switches the process on the Jumping search, using Dy in order to
directly jump in those areas candidate to enclose the fastening
elements, saving computational time. If, during the Jumping
search, the fastening elements are not found in the position where

they were predicted, then the system writes the position of the fault
in a log-file, calls RD&TM for updating xc, and restarts the
Exhaustive search.

3.2. Data Reduction Phase

In pattern recognition, input images are generally pre-processed in
order to extract their intrinsic features. For reducing the input
space to the classifiers, we have found a features extraction
algorithm able to concentrate all the important information on the
input patterns in a small set of coefficients. This algorithm has
been developed considering 2-D DWTs [8], since DWT
concentrates the significant variations of input patterns in a
reduced number of coefficients. We have tested different DWTs
varying the number of decomposition levels, in order to reduce this
set, without lose accuracy. Specifically, we have chosen both a
compact wavelet introduced by Daubechies [8], and the Haar
DWT (also known as Haar Transform, [9]) since we have verified
that, for our specific application, the combined use of these two
approaches avoids -almost completely- the false positive detection.

The best compromise has been reached by the Lowpass-
Lowpass subband at the 2nd decomposition level (say, LL2)
consisting only of 6x25 coefficients. Therefore, BDM computes
LL2 of a Haar DWT and, if these are positively classified by HC
(see paragraph 3.3), then BDM produces also LL2 of a Daubechies
DWT, in order to perform a second validation. In fact, we have
found that the double classification strategy described in the
following paragraph, gets an accuracy of 99.9% in recognizing
bolts in the primitive windows, practically at-all avoiding false
positive detection.

3.3. Classification Phase

BDM employs two MLPNCs, say DC and HC. They were trained
respectively for Daubechies DWT and Haar DWT using Error
Back Propagation algorithm with an adaptive learning rate
[Bishop (1995)] based on 391 positive examples of hexagonal-
headed bolts with different orientations, and 703 negative
examples consisting of 24x100 pixels windows extracted from the
video sequence. DC and HC have an identical three-layers
topology 150:10:1 and differ only for the weights.

To detect a presence of the bolt, the outputs from DC and HC
are combined according to a logical AND. In fact, during the
development of our system, we observed that though a
discrimination based on Daubechies DWT reached a very high
detection rate, it also produced a certain number of False Positives
(FPs) during the Exhaustive search.

In order to reduce these errors, a “double validation” strategy
was introduced. Because of its very low computational overhead,
the Haar DWT was also taken into account designing and training
HC, a neural classifier working on its LL2 subband. HC reached
the same detection rate of DC, though revealing much more FPs.
Nevertheless, we observed that the FPs resulting from HC were
originated from different frames than those causing the FPs
revealed by DC.

This phenomenon is put in evidence by Fig. 3, where a spike
denotes a detection (indifferently true or false) at a certain
examined line of the video sequence. As it is evidenced, only 2
FPs over 4,500 analyzed lines (90,000 processed frames) have
resulted by the double validation obtained by the logical AND
between DC and HC.

2334

Fig. 4. Nvidia G80: Block Diagram (a); SPs and texture units (b);
Thread batching of the described system (c).

// Initialization
cublasSetVector(800,sizeof(float),iSVDPatch,1,SVDPatch,1); // CL
SplitCol<<<401,401,2000>>>(SVDPatch,SVDPatchParte_L); // CK
ReplicateCol<<<401,12,200>>>(FilterxMean,FilterxMean_L); // CK
ReplicateCol<<<401,8,100>>>(HiddCoeff_bias,HiddCoeff_bias_L);// CK
ReplicateCol<<<401,1,30>>>(LastCoeff_bias,LastCoeff_bias_L);// CK
// Processing
cublasSgemm('n','n',12,401,401,1.0,Filtro_,12,SVDPatchParte_L,401,
 -1.0,FilterxMean_L,12); // CL
cublasSgemm('n','n',8,401,12,1.0,HiddenCoeff_,8,FilterxMean_L,12,1.0,
 HiddenCoeff_bias_L,8); // CL
Sigmoid<<<401,8,100>>>(HiddenCoeff_bias_L,ldata_L); // CK
cublasSgemm('n','n',1,401,8,1.0,LastCoeff_,1,ldata_L,8,1.0,
 LastCoeff_bias_L,1); // CL
Sigmoid<<<401,1,30>>>(LastCoeff_bias_L,ldata_L); // CK
ris[0] = (double)cublasIsamax(401 , ldata_L , 1); // CL
// Initialization
cublasSetVector(1500,sizeof(float),iHiddenCoeff,1,HiddenCoeff,1); // CL
cublasSetVector(10,sizeof(float),iLastCoeff,1,LastCoeff,1); // CL
cublasSetVector(4272,sizeof(float),iHAARPatch,1,HAARPatch,1); // CL
// Processing: HAAR
dim3 block(4,4);
dim3 grid(1000,6);
HAAR2D<<<grid,block>>>(HAARPatch,odata); // CK
// Processing: MLNPC
ReplicateCol<<<40,10,50>>>(HiddenCoeff_bias,
 HiddenCoeff_bias_L); // CK
ReplicateCol<<<40,1,5>>>(LastCoeff_bias,LastCoeff_bias_L); // CK
cublasSgemm('n','n',10,40,150,1.0,HiddenCoeff,10,odata,150,
 1.0,HiddenCoeff_bias_L,10); // CL
Sigmoid<<<40,10,50>>>(HiddenCoeff_bias_L,udata); // CK
cublasSgemm('n','n',1,40,10,1.0,LastCoeff,1,udata,10,
 1.0,LastCoeff_bias_L,1); // CL
Sigmoid<<<40,1,5>>>(LastCoeff_bias_L,risultato); // CK
// Write Results
cublasGetVector(40,sizeof(float),risultato,1,Ris,1); // CL
Fig. 5. Extracted code from RD&TM (top) and BDM (down)
modules. CL: CUBLAS Library; CK: CUDA Kernel.

4. GPU-BASED PARALLEL IMPLEMENTATION

The most relevant computational tasks of the system are those of
RD&TM and BDM. Nevertheless, they mainly consist of

algorithms (i.e. SVD, Haar and Daubechies DWTs, MLNPC),
which are implicitly parallel and can easily exploit a SIMD
implementation on dedicated hardware. Therefore, in order to
reach a high throughput and real-time video analysis, we have
adopted a NVIDIA 2-Way SLI, a device provided with two
Graphical Processing Units (GPUs) GeForce 8800 Ultra, working
in SLI (Scalable Link Interface) mode.

The GeForce 8800 Ultra [10], as shown in Fig. 4.a, contains
128 stream processors (also called shader processors, SPs)
arranged into 8 clusters of 16 processors. The processors within the
same cluster share the same L1 cache and (if required by the
computation) may access the L1 cache of other clusters through a
bus. The L2 cache is arranged into 6 partitions, each having a 64-
bit interface to graphic memory, with a total width of 384 bits.
Moreover, (see Fig. 4.b) each cluster of SP shares 4 texture address
units (TA units) and 8 texture filtering units (TF units). TA units
are completely decoupled from the SP, meaning that it’s possible
access them while SPs perform other operations, even using
different clock frequencies. Embedded buffers store the output of
the SP and can be quickly read by another SP for subsequent
processing. This allows SIMD instructions to be "sistolically"
implemented across clusters of stream processors.

In order to better exploit this device, we have adopted the
technology CUDA™ (compute unified device architecture) [11]
based on the C programming language. When programmed
through CUDA, the GPU is viewed as a computing device capable
of executing a very high number of threads in parallel. It operates
as a coprocessor to the main CPU: a portion of an application that
is executed many times, but independently on different data, can
be isolated into a function that is executed on the device as many
different threads.

Moreover, because of their algorithmic nature, we have
optimized the kernels computing SVD and MLNPC including
CUBLAS library [12], an efficient implementation of BLAS
(Basic Linear Algebra Subprograms), which allows access to the
computational resources of NVIDIA GPUs.

The modules computing SVD, Haar/Daubechies DWTs, and
MLNPC have been implemented in custom ".cu" CUDA files.
These files, as evidenced by a scheme in Fig. 4.c and an
exemplificative code shown in Fig. 5, consist of a part based on
custom CUDA kernels (labels KC), and another part based on
CUBLAS library (labels CL).
Any call to a CUDA kernel must specify the execution
configuration for that call. This configuration appears in the form
<<<dimGrid, dimBlock[, numBytes] [, associatedStream]>>>
between the function name and the parenthesized argument list,
where dimBlock and dimGrid specify how the resulting data
stream is partitioned (i.e., into a grid composed by dimGrid blocks,
each one having dimBlock elements, representing the threads),
numBytes and associatedStream are optional arguments,
respectively specifying the bytes of shared memory that the call
dynamically allocates per each block in addition to the statically
allocated memory, and the associated stream (both of them default
0). For instance, the call "ReplicateCol<<<401,12, 200>>>(...)"
partitions its computing into a grid of 401 blocks, each one having
12 threads and 200 bytes of additional dynamic memory; while the
lines "dim3 block(4,4);", "dim3 grid(1000,6);" and "HAAR2D
<<<grid,block>>>(...);" configure the call to HAAR2D with a grid of
1000x6 blocks, each one mapped in 4x4 threads. Anyhow, CUDA
standardizes the maximum number of threads per block
(dimBlock 512) and of blocks (dimGrid 65,535).

2335

Fig. 6. Monitor. At the moment of this snapshot, the detection of
left and right bolts is signaled.

Processed lines 3,032,432 [lines] 9.097 [km]
Elapsed time (e.t.) 175.37 [sec]
Throughput (t.p.) 17,292 [lines/sec] 186.75[km/h]
Jumped lines 2,980,012 [lines] 98.27 %
Jumping search e.t. 117.70 [sec] 67.12 %
Jumping search t.p. 25,319[lines/sec] 273.45[km/h]
Exhaustive lines 52,420 [lines] 1.73 %
Exhaustive search e.t. 57.67 [sec] 32.88 %
Exhaustive search t.p. 909 [lines/sec] 9.82 [km/h]

Table 1. Obtained Performance.

The produced ".cu" files have been translated by the nvcc
CUDA compiler [13] using the NVIDIA script NVMEX [14], a
command which translates CUDA files into executable files
(".mexw64" or ".mexw32") that can be directly called from
MatLab, as if they were MATLAB built-in functions.

We have chosen MatLab as target environment for our system
not only because it allocates matrices in memory coherently as
CUBLAS does (i.e., by columns, contrarily as C compilers that
works by rows), but also for exploiting the debugging and the fast
prototyping facilities, as well as the efficient tools for creating
graphic interfaces provided by MatLab (see Fig. 6).

5. ACCURACY AND COMPUTING PERFORMANCE

Accuracy in detecting the presence/absence of bolts was measured
over a sequence covering more than 9 kilometers of railway and
containing 3,350 hexagonal bolts. The system detected 99.9% of
the visible bolts, 0.1% of the partially occluded bolts and 95% of
the absences (Table 1).

The recognition rate resulted even more accurate using as
benchmark a sequence of more than 6 kilometers containing 3,200
hook bolts: in this case, the detection of both absent and present
elements was 100%, getting also an acceptable detection rate more
affordable than in case of partially occluded hexagonal bolts (47%
and 31% respectively for left and right), which makes the system.
This higher accuracy is justified since the hexagonal shape causes
more frequent miss classifications because of their similarity with
the stones on the background.

Thanks to its parallel implementation, the obtained
throughput (measured disabling the display) resulted 187 km/h.
This one, compared to the throughput obtained on a Dual Quad-
Core AMD Opteron™ Processor 2352 (8 CPUs) clocked at 2.11
GHz with 8 GB of RAM, represents a speed-up of 287 %, meaning
a 23x speedup with respect to a single CPU.

6. CONCLUSION AND FUTURE WORK

This paper has proposed a visual system able to detect the bolts
that secure the rail to the sleepers.
The implemented prediction module and the GPU-based parallel
implementation allow to speed up the system performance in terms
of the inspection velocity: the system analyses video at 273 km/h
(Jumping phase) and at 10 km/h (Exhaustive phase), reaching a
composite throughput of 187 km/h, for the considered benchmark.
If the system remains in the Jumping phase for longer time,
performance can increase subsequently. Next work can be
addressed in this direction, for example, automatically skipping
those areas where the fastening elements are covered by asphalt
(i.e., level crossing, where Exhaustive phase is executed in
continuous).

Obviously, the easy portability of the system onto more
powerful computing solutions (e.g., the teraflop many-core
processor NVIDIA Tesla provided with 960 cores per processor)
can assure even higher throughput.

However, also considering the current performance, the
proposed system constitutes a significant aid to the railway safety
issue, since its high reliability, robustness, accuracy and computing
performance allow a more frequent maintenance of the entire
railway network.

7. REFERENCES

[1] C. Alippi, E. Casagrande, F. Scotti, and V. Piuri, “Composite
Real-Time Image Processing for Railways Track Profile
Measurement,” IEEE Trans. Instrumentation and Measurement,
vol. 49, N. 3, pp. 559-564, June 2000.
[2] K Sato, H. Arai, T. Shimuzu, and M. Takada, “Obstruction
Detector Using Ultrasonic Sensors for Upgrading the Safety of a
Level Crossing,” Proceedings of the IEE International Conference
on Developments in Mass Transit Systems, pp. 190-195, April
1998.
[3] W. Xishi, N. Bin, and C. Yinhang, “A new microprocessor
based approach to an automatic control system for railway safety,”
Proceedings of the IEEE International Symposium on Industrial
Electronics, vol. 2, pp. 842-843, May 1992.
[4] Cybernetix Group (France), “IVOIRE: a system for rail
inspection,” internal documentation, http://www.cybernetix.fr
[5] www.matrox.com/imaging/products/odyssey_xcl/home.cfm
[6] www.coreco.com
[7] “CAMERALINK: specification for camera link interface
standard for digital cameras and frame grabbers,”
www.machinevisiononline.org
[8] Daubechies I. “Orthonormal bases of compactly supported
wavelets,” Comm. Pure & Appl. Math., vol. 41, pp. 909-996. 1988.
[9] Strang G., & Nuguyen T., Wavelet and Filter banks, Wellesley
College, 1996.
[10] NVIDIA GeForce 8800 GPU Architecture Overview,
NVIDIA Technical Brief, November 2006.
[11] NVIDIA CUDA Compute Unified Device Architecture,
Programming Guide, Version 1.1, 6/23/2007.
[12] NVIDIA CUDA, CUBLAS Library, PG-00000-002_V1.0,
June, 2007.
[13] NVIDIA CUDA, The CUDA Compiler Driver NVCC,
11/5/2007.
[14] NVIDIA, White Paper, Accelerating MATLAB with
CUDA™ Using MEX Files, September 2007.

2336

