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ABSTRACT

In the quality assessment task, observers evaluate a natural image
based on its perceptual resemblance to a reference. For the utility
assessment task, observers evaluate the usefulness of a natural image
as a surrogate for a reference. Humans generally use the information
captured by an imaging system and tolerate distortions as long as
the underlying task is performed reliably. Conventional notions of
perceived quality cannot generally predict the perceived utility of a
natural image. This paper examines variations to basic components
of a recently introduced utility assessment algorithm that compares
the contours of a reference and test image, referred to as the natu-
ral image contour evaluation (NICE), in terms of their capability to
improve the prediction of perceived utility scores. Results show that
classical edge-detection algorithms incorporated into NICE provide
statistically equivalent performance to other, more complex edge-
detection algorithms.

Index Terms— utility assessment, quality assessment, edge de-
tection

1. INTRODUCTION

In many imaging applications, humans use the information captured
by an imaging system and tolerate distortions as long as the underly-
ing task is performed reliably. The public safety sector (e.g., law en-
forcement, fire control, and emergency services) and the military use
imaging systems in real-time tactical scenarios to make immediate
decisions on how best to respond to an incident [1, 2]. Frequently,
the imaging system generates images by sensing energy at wave-
lengths outside of the visible spectrum of light. For example, fire-
fighters use thermal imaging cameras to locate hot-spots in a burning
structure [2]. In another example, both law enforcement and the mil-
itary use infrared cameras in night-time surveillance and reconnais-
sance applications [2, 3]. Such images should be assessed according
to their usefulness, or utility, rather than according to the conven-
tional notion of perceptual quality, which has been largely studied
in the context of images used in consumer applications. Merely em-
ploying an existing quality assessment (QA) algorithm to predict the
utility of an image is insufficient, because a perceived quality score
is not a proxy for a perceived utility score (cf. Figure 2). A decrease
in perceived quality may not affect the perceived utility.

Present QA algorithms aim to generate scores for natural images
consistent with subjective scores for the quality assessment task. For
the quality assessment task, human observers evaluate a natural im-
age based on its perceptual resemblance to a reference. The refer-
ence may be either an explicit, external natural image or an inter-
nal reference, only accessible to the observer. Since natural images
communicate useful information to humans, it is often relevant to
consider the utility assessment task. For the utility assessment task,
human observers evaluate the usefulness of a natural image as a sur-
rogate for a reference.

Recently, the natural image contour evaluation (NICE), was in-
troduced as a utility assessment algorithm [4]. NICE conducts a
comparison of the contours of a test image to those of a reference
image to score the test image. This contour-based image assessment
algorithm demonstrates a viable departure from traditional QA al-
gorithms that incorporate energy-based approaches and is capable of
predicting perceived utility scores. This paper examines variations to
basic components of the NICE algorithm to determine their impact
when predicting both perceived quality and perceived utility scores.

This paper has the following organization: Section 2 discusses
the differences in perceived quality and perceived utility using an
image database with subjective scores for each task. Section 3 de-
scribes the NICE algorithm. An analysis with regard to the capabil-
ity of variations to NICE to predict subjective scores for both quality
and utility assessment tasks is provided in Section 4. Conclusions
are presented in Section 5.

2. PERCEIVED QUALITY AND PERCEIVED UTILITY

The CU-Nantes image database is a collection of distorted images
for which perceived quality scores and perceived utility scores have
been recorded [4]. The database consists of 5 reference grayscale
images and 90 processed images that were generated from the refer-
ence images. The processed images correspond to image represen-
tations investigated in a previous study by the authors (cf. Figure 1)
[4]: signal-based (SB) and visual-structure-preserving (VSP). These
image representations induce distortions that are spatially correlated
with the natural image and disrupt different image characteristics
to deteriorate the visual information. The SB representation corre-
sponds to a class of images whose distortions are induced by quan-
tizing wavelet subband coefficients (e.g., JPEG-2000 compression).
The VSP representation corresponds to a class of images whose tex-
ture has been removed with limited disruption to object boundaries
and edges. The VSP representations may either include or exclude
low-frequency (LF) signal information. Higher-frequency signal in-
formation is believed to convey salient visual information for inter-
pretation, so VSP representations that exclude LF signal informa-
tion, denoted VSP-noLF, were also generated.

The CU-Nantes database includes both perceived quality and
perceived utility scores [4]. Perceived quality scores are reported as
mean opinion scores (MOS) that were collected using the SAMVIQ
protocol [5]. Quality scores lie on the interval [0, 100], where a value
of 100 is the highest perceived quality score.

Perceived utility scores were obtained using paired comparison
tests [4]. Utility scores are reported such that a score of zero cor-
responds to the recognition threshold of a reference image and a
score of 100 corresponds to an image that is visually indistinguish-
able from the reference image1. The recognition threshold specifies

1Images that are not useful surrogates for a reference (i.e., unrecogniz-
able) have perceived utility scores below zero. An enhancement with respect
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(a) airplane (reference) (b) DCQ-J2K

(c) VSP-LF (d) VSP-noLF

Fig. 1. Original reference airplane and average observer recognition
thresholds for two types of visual-structure-preserving (VSP) rep-
resentations and the DCQ signal-based representation (DCQ-J2K).
The VSP representations shown differ with regard to the inclusion
of low-frequency (LF) information.

a collection of maximally degraded images for which an observer
still understands the content [4].

The collected subjective data clearly demonstrates that a per-
ceived quality score is not a proxy for a perceived utility score. Fig-
ure 2 shows the relationship between the perceived utility scores as
a function of the perceived quality scores plotted by image repre-
sentation. Test images with perceived utility scores below -10 were
omitted from the set of test images, leaving 62 of the original 90 test
images. Use of a linear fit to map perceived quality scores to per-
ceived utility scores produces poor utility estimates (RMSE = 15.1).

Perceived quality does not uniquely map to perceived utility.
The linear relationship between quality and utility for images with
quality scores below 30 suggests that observers judge very low qual-
ity images in terms of the ability to interpret the content. For im-
ages with perceived quality scores above 40, the VSP-noLF images
have nearly equal perceived utility scores to their VSP-LF counter-
parts, yet many of the VSP-noLF images have significantly lower
perceived quality scores (about 25 quality points lower) than their
VSP-LF counterparts. In general, any algorithm optimized to pre-
dict perceived quality scores cannot immediately predict perceived
utility scores.

3. NATURAL IMAGE CONTOUR EVALUATION

Object recognition is widely believed to rely on the perception of
image details, such as sharp edges, which are conveyed by high spa-
tial frequencies [6, 7]. Edges or contours, defined by sudden inten-
sity changes, can be identified by the presence of an absolute maxi-
mum magnitude in the gradient of an image. This section describes

to an image’s usefulness has a utility score above 100.
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Fig. 2. Relationship between perceived utility scores and the per-
ceived quality scores for five natural images. Standard error bars
have been included for the subjective scores.

the natural image contour evaluation (NICE) utility assessment al-
gorithm [4].

Unlike traditional QA algorithms that use energy-based compu-
tations, NICE compares the contours of a test image to that of a ref-
erence image to produce a numerical score indicating the predicted
utility score of the test image. The framework has three compo-
nents: 1) contour identification of reference and test images, 2) mor-
phological dilation of binary images representing image contours, 3)
element-wise exclusive-or (XOR) between dilated binary images.

The multi-channel model of the human visual system inspired
the use of multi-scale contours in the original NICE design [4]. Sev-
eral computationally simpler algorithms provide single-scale con-
tours, so this section describes two methods to identify image con-
tours: 1) using wavelet coefficients, which was considered in the
original formulation of NICE [4], and 2) classical edge-detection al-
gorithms. The section concludes by specifying the computation of
the NICE score from the identified image contours.

3.1. Multi-scale Contours using Wavelet Coefficients

Awavelet representation of an image provides multiscale directional
derivatives of that image, which can be used to identify image con-
tours at different image scales. Both the reference and test image can
be represented using an undecimated implementation of the steer-
able pyramid (SPYR) [8] using D orientations and S scales2. Let
Ws,θ(i) and Ŵs,θ(i) denote the ith wavelet coefficient of the respec-
tive reference and test images in the subband corresponding to scale
s ∈ {1, 2, . . . , S} and orientation θ ∈ {0, π

D
, 2π

D
, . . . , π(D−1)

D
}.

For each image scale s, the local modulus maxima (LMM) [9]
of wavelet coefficient scales correspond to image contours for the
reference and test images. The LMM are determined from gradient
vectors formed from wavelet subbands corresponding to derivatives
in horizontal and vertical spatial directions [9]. Define Gs(i) =

Ws,0(i) − jWs, π

2
(i) and Ĝs(i) = Ŵs,0(i) − jŴs, π

2
(i) as the gra-

dient of the respective reference and test images at scale s, where
j =

√−1. For image scale s, let Ms(i) = |Gs(i)| and As(i) =
� Gs(i) denote the respective modulus and angle of the gradient
of the reference image. Similarly, define M̂s(i) = |Ĝs(i)| and
Âs(i) = � Ĝs(i) for the test image. LMM of the reference image

2The high-pass residual generated by the steerable pyramid is not used.
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correspond to points of Ms(i) greater than the two adjacent neigh-
bors in the direction indicated byAs(i), and for the test image, LMM
are similarly identified using M̂s(i) and Âs(i). For scale s, let Is

and Îs denote sets of indices i corresponding to LMM of the respec-
tive reference image and test images.

Binary images represent image contours of the reference and
test images. The image contours at scale s of the reference and test
images are identified as LMM that exceed a threshold βs based on
the reference image and is given as βs = 1

p
maxi Ms(i) for some

scalar p > 1. Specifically, define Bs(i) and B̂s(i) as

Bs(i) =

{
1 Ms(i) > βs and i ∈ Is

0 else
(1)

B̂s(i) is similarly defined using M̂s, Îs, and βs.

3.2. Single-scale Contours using Edge-Detection Algorithms

Numerous algorithms have been designed to detect edges in natural
images. Three classical edge-detection algorithms are examined as
alternatives to the wavelet-based contour identification approach de-
scribed in Section 3.1. Although these algorithms could be extended
to generate binary images corresponding to contours at several im-
age scales, these algorithms are only used to generate the binary
images B1 and B̂1, corresponding to contours of one scale. Each
of the algorithms incorporate a filtering operation that approximates
the first-derivative of the image.

The Sobel and Prewitt operators are computationally simple op-
erators used for edge-detection [7]. Both algorithms filter an image
with two 3 × 3 linear filters, one that approximates a horizontally-
oriented derivative and another that approximates a vertically-oriented
derivative. If Gx and Gy correspond to the approximated horizon-
tal and vertical derivatives of the original image, respectively, then
an edge-intensity image, given as G =

√
G2

x + G2
y , is subjected to

hard-thresholding, using a threshold related to the average value of
G, to produce a binary image identifying image contours.

The Canny edge-detector filters the image with the derivative of
a Gaussian specified for a particular σ > 0 and applies thresholding
to generate a binary image [10]. The parameter σ in the Canny filter
controls the suppression of high frequencies before detecting edges3.

3.3. Generating NICE Score from Identified Contours

An objective utility score for NICE is computed by comparing the
contours of the reference and test images at each image scale s, rep-
resented as the respective binary images Bs and B̂s defined accord-
ing to a method presented in Sections 3.1 or 3.2. The binary im-
ages Bs and B̂s are subjected to morphological dilation [11] with
a 3 × 3 “plus-sign” shaped structuring element, and the point-wise
exclusive-or (XOR) operation of the dilated binary images produces
the binary image Es(i). The morphological dilation accommodates
small shifts in image contours that result from distortion artifacts in a
test image and should not be quantified as errors. The overall NICE
score for the test image is computed as

NICE =

S∑
s=1

asN(s), (2)

whereN(s) is the number of non-zero elements ofEs and the {as}S
s=1

are nonnegative scalars. When using the classical edge-detection al-
gorithms from Section 3.2, S = 1.

3This paper implements the Canny edge-detector for σ = 1

4. PREDICTING QUALITY AND UTILITYWITH NICE

This section examines the capability of NICE to predict both per-
ceived quality and perceived utility scores for the images in the CU-
Nantes database [4]. The performance of NICE is evaluated when
using different contour identification algorithms and with or with-
out the morphological dilation operation as described in Section 3.
The performance of the visual information fidelity (VIF) criterion
[12] and a modified implementation, denoted VIF*, that adjusts the
weights used to pool the objective scores produced by VIF across
image scales, are evaluated to demonstrate the comparative perfor-
mance of energy-based QA algorithms 4 [4].

The original implementation of NICE identified contours using
a four-scale steerable pyramid (SPYR) withD = 6 six orientations,
but only subbands corresponding to horizontal and vertical frequen-
cies are used [4]. To reduce the computational complexity under-
lying the original implementation of NICE, fewer orientations (i.e.,
D = 2 and D = 4) are considered. Implementations using the
steerable pyramid to identify image contours compute the threshold
βs for p = 20 and are identified with the acronym SPYR-D, where
D is the number of orientations.

Objective scores generated by QA algorithms frequently exhibit
a nonlinear relationship with subjective scores. The nonlinear map-
ping of objective scores a to subjective scores f(a) is given as

f(a) = p1 × [1 + exp(p2(a − p3))]
−1 + p4. (3)

The parameters {pj}4
j=1 were fitted to the data to minimize the sum-

squared error between nonlinear mapped objective scores and the
subjective scores. The fitted objective scores are evaluated with re-
spect to the subjective scores using the Spearman rank order cor-
relation coefficient (ROCC), the squared Pearson (linear) correlation
coefficient r2, the root mean squared error (RMSE), and an F -test to
individually compare the residual variance of NICE using SPYR-6
contour identification to the other algorithms.

An F -test determines whether the residual variance of algorithm
is statistically larger or smaller than the other [13]. Let σ2

SPY R−6

and σ2
B denote the variance of the residuals corresponding to the

SPYR-6 NICE implementation and some alternative algorithm B
when used to predict subjective scores. Using the statistic Fstat =
σ2

SPY R−6/σ2
B , algorithms whose value of Fstat lie inside the inter-

val [1/Fcrit, Fcrit] exhibit statistically equivalent prediction perfor-
mance with the SPYR-6 NICE implementation. For a 95% confi-
dence level and 62 test images, Fcrit = 1.53.

4.1. Results

Among the algorithms evaluated, VIF* provides significantly smaller
errors (RMSE = 4.16) when predicting perceived quality scores than
VIF and the various implementations of NICE. When using clas-
sical edge-detection algorithms to identify contours, morphological
dilation has no statistically significant effect with regard to the per-
formance capabilities when predicting perceived quality scores. Ta-
ble 1 summarizes the results from a statistical analysis of the fitted
objective scores with the perceived quality scores. An F -test that
compares the residual variances of the fitted VIF* scores to the fitted
scores of other algorithms validates the significance of its improved
performance.

Most implementations of NICE that include morphological di-
lation and VIF provide significantly equivalent errors, based on an

4VIF* multiplies the individual subband calculations corresponding to
I(�CN ; �EN |sN ) and I(�CN ; �F N |sN ) in Eqs. (12) and (13) of [12] by 1

N
.
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Table 1. Results summarizing the performance of NICE using various contour identification algorithms for the quality and utility assessment
tasks. Objective scores, fitted to subjective scores with a logistic function (Eq. 3), are evaluated with respect to the subjective scores using
the Spearman rank order correlation coefficient (ROCC), the squared Pearson (linear) correlation coefficient r2, the root mean squared error
(RMSE), and an F -test to individually compare the residual variance of NICE using SPYR-6 contour identification to the other algorithms.
Algorithms whose value of Fstat lie inside the interval [0.65, 1.53] exhibit statistically equivalent prediction performance with the SPYR-6
NICE implementation at the 95% confidence level. Values of Fstat inside the interval [0.65, 1.53] appear in bold typeface.

Quality Task Utility Task
Algorithm Contour Identification r2 ROCC RMSE Fstat r2 ROCC RMSE Fstat

NICE SPYR-6 (from [4]) 0.917 0.952 6.66 1.00 0.940 0.944 8.92 1.00
NICE SPYR-4 0.877 0.936 8.11 0.67 0.945 0.953 8.49 1.10
NICE SPYR-2 0.885 0.939 7.83 0.72 0.950 0.958 8.11 1.21
NICE Sobel (no dilation) 0.769 0.868 11.1 0.36 0.901 0.954 11.4 0.61
NICE Sobel 0.800 0.897 10.3 0.42 0.950 0.970 8.11 1.21
NICE Prewitt (no dilation) 0.775 0.879 11.0 0.37 0.905 0.956 11.2 0.63
NICE Prewitt 0.808 0.903 10.1 0.43 0.953 0.971 7.83 1.30
NICE Canny (no dilation) 0.775 0.873 11.0 0.37 0.857 0.940 13.7 0.42
NICE Canny 0.790 0.890 10.6 0.39 0.884 0.940 12.3 0.53
VIF n/a 0.882 0.942 7.93 0.81 0.959 0.969 7.33 1.48
VIF* n/a 0.967 0.974 4.16 2.56 0.912 0.886 12.2 0.53

F -test, when predicting perceived utility scores. Table 1 summa-
rizes the statistical analysis of the fitted objective scores with the
perceived utility scores. NICE implemented with the Canny edge-
detection algorithm to identify image contours exhibits poorer pre-
diction accuracy (RMSE > 10) regardless of the inclusion of mor-
phological dilation when computing the NICE score. However, when
implemented with either the Sobel and Prewitt operators and mor-
phological dilation, NICE performs statistically the same as the when
the steerable pyramid (SPYR) is used to identify contours.

4.2. Discussion

The results demonstrate that the NICE algorithm is capable of pre-
dicting perceived utility scores for natural images. The results for
various methods tested to identify image contours reveal that sim-
pler, rather than more complex algorithms such as the Canny edge-
detector, provide better results when coupled with morphological di-
lation. The Canny edge-detector was originally designed to be more
robust to noise in natural images when detecting edges, but this fea-
ture is counter to the desired goal of NICE, which seeks a contour
identification scheme that is less robust to distortions so differences
between the contours of reference and test images can be quantified.

The results raise questions about the benefits of using contours
from multiple image scales versus single-scale image contours to
predict perceived utility scores, since each approach produces statis-
tically equivalent results when coupled with morphological dilation.
In general, contours from coarser image scales appear in finer im-
age scales, making contour information from multiple scales largely
redundant. This redundancy could be leveraged to identify salient
contours in images. Disruptions to salient contours could be empha-
sized over other contours. Such variations are left for future work.

5. CONCLUSIONS

This paper examines the performance of the natural image contour
evaluation (NICE) algorithm using different contour identification
schemes. This edge-based image assessment algorithm is shown to
be a viable alternative to traditional energy-based quality assessment
algorithms and is capable of predicting perceived utility scores.

Within the NICE algorithm is a morphological dilation opera-
tion intended to accommodate small shifts in the image contours that
would other have been quantified as errors. Including morpholog-

ical dilation improves the prediction accuracy when using classical
edge-detection algorithms. Furthermore, the Sobel and Prewitt edge-
detection algorithms provide statistically similar performance to a
more complex wavelet-based, multi-scale edge detection algorithm
when incorporating the morphological dilation operation.
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