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ABSTRACT 

Sparse signal representation from overcomplete dictionaries 
have been extensively investigated in recent research, 
leading to state-of-the-art results in signal, image and video 
restoration. One of the most important issues is involved in 
selecting the proper size of dictionary. However, the related 
guidelines are still not established. In this paper, we tackle 
this problem by proposing a so-called sub clustering K-SVD 
algorithm. This approach incorporates the subtractive 
clustering method into K-SVD to retain the most important 
atom candidates. At the same time, the redundant atoms are 
removed to produce a well-trained dictionary. As for a 
given dataset and approximation error bound, the proposed 
approach can deduce the optimized size of dictionary, which 
is greatly compressed as compared with the one needed in 
the K-SVD algorithm. 

Index Terms— Sparse representation, K-SVD, 
subtractive clustering, OMP

1. INTRODUCTION 

Sparse decomposition over a redundant dictionary has been 
proved as an efficient technique to handle natural images. 
Suppose a signal nIRy has a sparse approximation over a 

dictionary nxKIRD , which is composed of K atoms 
K
jj 1}{d , then we can find a linear combination of a “few” 

atoms from D that is “close” to the original signal. As for 
natural image signal y, steerable wavelets, curvelets, 
contourlets and something like can be the candidates to 
design dictionaries. In contrast, the learned non-parametric 
dictionaries are superior to these pre-defined ones for image 
representation. K-SVD is one of such excellent dictionary 
learning algorithms, which achieves comparable or even 
better performance than the state of the art in image 
denoising, inpainting, compression and so on [1]. However, 
the total number of atoms (or dictionary size) K-SVD 
should be known in advance and cannot be selected 
automatically. Once a relative small dictionary is selected, it 
might fail to find the sparse linear combination of the given 
signal. Moreover, a bigger dictionary might introduce 

redundant atoms, resulting in extra computation burden on 
sequential processing tasks. Until now, it is still an open 
issue about how to optimize the dictionary size for sparse 
representation. 

To this point, the most recent work of Mazhar and 
Gader proposed the EK-SVD algorithm, where the 
dictionary size can be reduced to a proper value by 
exploiting the Competitive Agglomeration algorithm to 
update the dictionary coefficients in K-SVD [2]. Once the 
proper size has been obtained, EK-SVD can then use the 
Matching Pursuits algorithm to learn a sparse dictionary 
accurately. After all, the proper initial size should be 
assigned to the dictionary. Otherwise, distinct errors or extra 
computation complexity would be incurred to the learning 
process of dictionary.  

In this paper, we propose a so-called Sub clustering K-
SVD algorithm, which characterizes its improvement on K-
SVD method in two main aspects: (1) An error-driven 
mechanism is introduced to the dictionary update stage, 
achieving a better reconstruction result. (2) Priority of the 
atoms guides the refinement of the dictionary. Thus the 
most important atoms are retained and well refined. 

The remainder of the paper is organized as follows: 
Section 2 introduces the related work of Sub clustering K-
SVD. Section 3 describes the proposed framework and the 
implementation details. Experimental results are reported in 
section 4 and section 5 concludes the paper. 

2. PRELIMINARIES 

2.1 The K-SVD Algorithm 

The K-SVD algorithm can find the dictionary D that yields 
sparse representations for a set of training examples. 
Specifically, this problem can be mathematically described 
by   

}{min 2

F
DXY

XD,
    Subject to 00||||, Ti ix (1)

where N
ii 1}{yY  is the example set and N

ii 1}{xX  is 

the set of representation coefficients of the signal. 
F

A  is 

called the Frobenius norm and is defined as 
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ij ijF
AA 2  , 

0
is the 0l norm, counts the non-zero 

entries of a vector (also called sparsity).
Like K-means, K-SVD use a two phase approach to 

update D and X iteratively. In sparse coding stage, D is 
fixed and any pursuit algorithm either Orthogonal Matching 
Pursuit (OMP) [4] or Basis Pursuit (BP) [5] algorithms can 
be used to compute xi to solve (1). In dictionary update 
stage, D and X are assumed to be fixed and only one 
column dk of D is updated at a time. Defines the group of 
examples that use dk as: 

}0)(,1|{ kxNii ik              (2)
Then compute 

kj
j

jk xdYE  and restrict kE by 

choosing the columns corresponding to k  so that we 

obtain R
kE .Finally, apply SVD decomposition 

TR
k VUE and update dk to be first column of U, and 
R
kx to be the first column of V multiplied by (1,1).

All dictionary atoms are updated in this way. Iterating 
through the two steps will produce dictionary that 
approximates given yi sparsely and accurately. 

2.2 Subtractive clustering Algorithm 

Subtractive clustering (SC) is a simple and effective 
clustering method to find cluster centers based on a density 
measure called the mountain function [6]. This technique is 
similar to mountain clustering, except that instead of 
calculating the density function at every possible position in 
the data space, it uses the positions of the data points to 
calculate the density function, thus reducing the number of 
calculations significantly. Given the data 
set n

i
N
ii IR,}{ 1 xxX , density measure is defined as  

N

i a

ij
j r

D
1

2

2

2

4/
exp

xx
                (3)

where ra is a positive constant representing a neighborhood 
radius. We call Dj the potential of xj. It is easy to see a data 
point with more points around it will have higher potential. 

The first cluster center 
1cx is chosen as the point having 

the largest potential. Next, the potential of all the data points 
will be updated as follows 

4/
exp 2

2

21

1
b

cj
cjj r

DDD
xx

         (4)

where rb is a positive constant representing a neighborhood 
radius that effected badly by the cluster centers. The next 

cluster center candidate is also selected according to the 
new potential values. But it is possible to be accepted or 
rejected as the real center by some rules. If 

1cj DD , then 

it is accepted. If 
1cj DD , then it is rejected.  and 

are called accept ratio and reject ratio respectively. If 

1cD < jD <
1cD , further calculating   

a

cji

c

j

rD
D i 2

min

1

xx
. If 1 , then the point is 

accepted, else it is rejected. Every time a new center cnew is 
found, the potential of all the data points should be updated 
as in (4) except replacing suffix c1 by cnew.

The merit of this clustering algorithm is it can find 
clustering centers without predetermined center number. 
The centers found will have more neighbors than other 
candidates and be distant enough from each other. In order 
to use it in following sparse dictionary learning approach, 
we generalize the subtractive clustering algorithm into a 
form that every data point has unit norm and given a weight 
to signify its importance. Thus the initial potential function 
is converted into 

n

i a

ij
ij r

xx
wD

1
2

2

2

4/
exp            (5)

where iw  is the weight of data ix  and 1
2ix .

3. THE SUB CLUSTERING K-SVD ALGORITHM 

The dictionary learning capabilities of K-SVD and the 
ability to find dominant atoms of subtractive clustering 
algorithm can be combined to learn better dictionaries with 
proper size.  
       In order to show that the centers extracted by 
subtractive clustering are close to dictionary atoms used to 
generate the data space, let’s consider a simple case. As 
shown in figure 1, the dictionary D contains 3 atoms d1, d2
and d3. The sparsity is 2 so that any data points belongs to 
one of the subspace Si (i=1, 2, 3) which are spanned by {d2,
d3}, {d1, d3} and {d1, d2} respectively. Point A and point B 
are two data points of the whole data point set. Point A is a 
linear combination of d2 and d3. Point B is on the direction 
of d3. When apply SC to the data points, point B is more 
likely to be chosen as a center than point A for its higher 
potential, which is equivalent to having more neighbors. If 
we define neighbors of data P are data points whose 
distance from P is less than r (r is a given radius), B has 
neighbors from both S1 and S2 while all of A’s neighbors 
come from S1. That means B will approach one of the atoms 
better than A and should be kept to update later. 
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Figure 1 Introductory example 
This toy example suggests that SC can be used to 

improve K-SVD in the following two aspects. Firstly, SC 
can be used to initialize the dictionary with data points of 
clustering center. Secondly, we can use SC to pruning 
similar atoms group or seldom used atoms learned during 
K-SVD iteration. SC does reduce the dictionary size 
considerably, but it also has a drawback. When being 
applied to image patches, it may exclude high frequency 
atoms compare with those dominant low frequency ones. If 
we reduce the threshold to retain the high frequency atoms, 
similar atoms group will also be retained. In order to avoid 
this situation, it is necessary to category atoms into several 
groups by their importance and applies SC to each group.  

This aim is achieved by extracting groups sequentially 
in our algorithm. Suppose DJ is the current learnt dictionary 
with J atom groups. If the root mean square error (RMSE) 
of training data by OMP on DJ is big, which means the 
number of atoms in DJ is not big enough to capture the 
specific structure of training image, we introduce a new 
group of atoms GJ+1 to approximate training data. Here we 
initialize GJ+1 by applying SC to the residuals of half-
sparsity (T0/2) approximations. T0/2 is chosen as a trade-off 
since keeping distance from T0 can make the impact of 
atoms that provide trivial contribution to iŷ  on ir̂ reduced 
while small value makes most atoms in GJ+1 close to atoms 
in DJ. After that, the new dictionary DJ+1 is improved by K-
SVD and atoms in GJ+1 is updated by SC to prune possible 
similar atoms wherein weight values are by product of K-
SVD. Multiple iterations make the dictionary learn more 
and more precise structure from the training image until the 
expected RMSE reached. 

It is noted that our sub clustering K-SVD algorithm is 
different from EK-SVD in two aspects: (1) EK-SVD 
learned dictionaries are the same as K-SVD when the 
dictionary size is set correctly. Our algorithm learns more 
accurate and auto sorted dictionaries by using SC to extract 
atom candidates. (2) The dictionary size of EK-SVD 
decreases all the time. For our algorithm, it increases most 
of the time with improving approximation quality and 
decrease only to prune possible similar atoms. 

A full description of the algorithm is given below: 

The sub clustering K-SVD algorithm 

4. EXPERIMENTAL RESULTS 

Simulation results: we conduct the synthetic tests same as 
in [1] and compare the result with K-SVD. 

We randomly choose a dictionary 5020RD and form 
a data set Y= 1500

1}{ iiy  whose atoms are linear combination 

of 3 dictionary atoms from D. White Gaussian noise with 
varying signal-to-noise ratio(SNR) was added to the 
resulting data points.  For each noise level, 50 trails were 
conducted. In these tests, the parameters of sub clustering 
K-SVD are set as follows: ra=0.5, rb=1, =0.5, =0.15,
E0=0.1, =0.9, T0=10, Itermax=20 and RMSE E set 
according to the noise level. For K-SVD, we set the 
dictionary size K = 50, sparsity T0 = 3, iteration number 
Itermax=20.

Results show that the estimated sizes are between 
50 1 and 92.5% of them are equal to 50. The rate of 
detected atoms is more than 95% and is 14%, 13%, 13%, 
and 24% higher than K-SVD for SNR levels of no noise, 
30db, 20db, and 10db case. It means sub clustering K-SVD 
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converges to the real dictionary atoms correctly and within 
fewer iteration times. 
Natural image experiments: The following experiments 
show that sub clustering K-SVD can learn proper 
dictionaries and achieve slightly lower error than K-SVD. 

Experiment 1: The training data consisted of 10000 
block patches of size 8*8 pixels randomly chosen from a 
training image. The testing data is obtained by dividing the 
same image into successive 8*8 blocks. For sub clustering 
K-SVD, the RMSE is set to 0.018. The other parameters are 
set the same as in the synthetic experiment. The K-SVD 
parameters are set the same as in [1]: K=441, T0=10 and 
Itermax=15.  The dictionary learned from lena is shown in 
figure 2. 

      
(a) Sub clustering K-SVD                (b)   K-SVD 
Figure 2 dictionaries learned from lena training data

Table 1: Dictionaries comparison  
Lena Baboon 

Algorithm size RMSE size RMSE
Sub clustering K-SVD 193 0.0124 2779 0.0178

K-SVD 441 0.0114 441 0.0368

As shown in table 1, the RMSE is close with the 
dictionary size reduce to 44% of K-SVD size for lena. For 
Baboon, our method obtains 2779 atoms to approach target 
RMSE while the result of K-SVD with 441 atoms is 
unbearable. The different size learnt shows our method can 
adaptively find a proper size dictionary. However, it is hard 
for K-SVD and EK-SVD to set an initial dictionary size. 

Experiment 2: we use a publically available face 
images database [7] as our image source. In the database, 
there are 15 individuals and 11 images per subject. We 
randomly extract 10000 block patches of size 8*8 from 
images of the first 5 subjects as training data and another 
20000 block patches from the last 10 subjects as testing data. 
The parameters used in the experiments are the same as in 
experiments 1 except that set T0 = 6 as in [2]. The iteration 
number used in K-SVD is set to 20 and the dictionary size is 
set to 441 and 179 as in [2]. The result is listed in table 2.

Table 2:  Performance comparison
Algorithm Sub clustering K-SVD K-SVD K-SVD 

Size 182 441 179 
RMSE 0.0115 0.0115 0.0131 

Table 2 shows that our method find dictionary size 182 
similar to EK-SVD’s 179 but with smaller RMSE. In Figure 
3, the dictionary size increase stepwise as new atom groups 
introduced sequentially and the last 20 iterations are just for 
finding more accurate atoms. 

0 10 20 30 40 50
0

50

100

150

200

J

di
ct

io
na

ry
 s

iz
e

(a) Dictionary size vs iteration 

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

dictionary size

R
M

S
E
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  Figure 3 Sub Clustering K-SVD Iterations 

5. CONCLUSIONS 

In this paper, we present a so-called sub clustering K-SVD 
algorithm to provide a useful tool for estimating the proper 
size of dictionary in sparse signal representation. As 
compared with K-SVD method, a rather smaller dictionary 
is needed to satisfy the given error bound. 
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