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ABSTRACT

Multi-view tracking of objects in video surveillance consists in seg-
menting and automatically following them through different cam-
era views. This may be achieved using geometric methods, e.g. by
calibrating camera sensors and using their transformation matrices.
However, in practice the precision of calibration is a major issue
when trying to achieve this task robustly.
In this paper, we present an alternative framework for multi-view
object matching and tracking based on canonical correlation analy-
sis. Our method is purely statistical and encodes intrinsic object ap-
pearances while being view-point invariant. We will show that our
technique is (i) easy-to-set (ii) theoretically well grounded and (iii)
provides robust matching and tracking results for traffic surveillance.

Index Terms— Canonical correlation analysis, object matching
and tracking, video surveillance.

1. INTRODUCTION

Multi-view object matching and tracking for video-surveillance re-
ceived a lot of attention in the recent years, motivated by security
applications and by the needs of video content providers [1, 2].
This is achieved by extracting objects on individual cameras and
matching them across different view-points. The first step is usually
achieved using statistical object modelling, motion estimation [3, 4]
and spatio-temporal segmentation [5, 6]. Our focus in this work is
mainly on the second step, i.e., on multi-view object tracking, so
we assume that information about object locations is available for
individual cameras.

Without loss of generality, we deal in this work with the case of
two un-calibrated camera sensors; extension to multiple sensors is
straightforward. Our goal is to find, for each time stamp (denoted by
t), a set of correspondences among candidate objects and hence trace
their trajectories through different views1 (see Fig. 1). Sensor views
are assumed overlapping in order to make the search of candidate
matches and hence object tracking possible.

The objects are visually described using a bag of low level SIFT
keypoints [7] extracted inside the underlying bounding boxes. Given
two overlapping and synchronous video sequences, let n be the num-
ber of frames such as the interest object is visible in both cameras and
let L = {x1, ..., xN} and R = {y1, ..., yN} be the set of keypoints
extracted from all the bounding boxes in the left and right views; we
assume that L, R are ordered so xi ∈ L will match yi ∈ R, i.e.,
the underlying (2D) SIFT interest points belong to the same phys-
ical object. We use canonical correlation analysis (CCA) in order
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1These views will be referred to as the left and the right side views.

to learn transformations which maximize the expected correlation of
pairwise data in L,R into a common latent space (see §2). We then
use these transformations in order to infer (new) object matches on
new video sequences of the same scene. Only pairs with the highest
correlations are kept as matches. Since the transformation between
two camera views might not be linear (due to occlusion, sensor is-
sues, illumination, etc.), the standard linear CCA might not be suf-
ficient. We will show indeed that the extended, non-linear, version
of CCA achieves better performances and implicitly handles these
transformations between different view-points (see §4).

Instead of CCA, one might consider homographic transforma-
tions in order to find matching points using the underlying 2D coor-
dinates (see for example [8]). Regardless of the difficulties linked to
camera calibration, this approach fails when camera views contain
overlapping bounding boxes because point correspondences based
on 2D positions are not discriminative enough. Besides, our CCA-
based approach only requires object associations which are easier to
setup than the precise point matching required by geometry-based
techniques.

The paper is organized as follows: in the next section we review
CCA and its kernelized version which allows us to learn object trans-
formations and perform matching through different view-points. In
§3 we present our object tracking strategy based on stochastic voting
which, given a right choice of parameters, achieves almost perfect
tracking results when compared to frame-based tracking. We show
the performance of our framework in §4 and we conclude the paper
in §5 with a discussion and final remarks.

2. VIEW-POINT TRANSFORMATION LEARNING

LetX be the input space (for instance the 128 dimensional Euclidean
SIFT space) and consider L,R ⊆ X , the two sets of training key-
points described in the previous section. The goal of this section is
to learn transformation matrices P�, Pr which make it possible to
characterize points in these sets while being view-point invariant.

2.1. Canonical Correlation Analysis

Canonical correlation analysis finds two sets of orthogonal axes inX
such that the projection of data in L, R maximizes their correlation
and most of their statistical variance. Let P�, Pr denote the projec-
tion matrices of these orthogonal axes which respectively correspond
to the left-hand and the right-hand sides camera sensors. CCA finds
these matrices by maximizing the following criterion [9, 10] :

(P∗

� ,P∗

r) = arg max
P�,Pr

P
′

� C�r Pr

s.t. P
′

� C�� P� = 1
P

′

r Crr Pr = 1,

(1)
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where C�r (resp. C��, Crr) are the interclass (resp. intraclass) co-
variance matrices of data in L, R. One can show (see for instance
[10]) that (1) is equivalent to solving the following eigenproblem

C�rC
−1
rr Cr�P� = λ2CrrP�

Pr = 1
λ

C−1
rr Cr�P�

(2)

As already discussed in §1, view-point transformations might not be
only geometric as they include other physical aspects including (illu-
mination changes, etc.), so one should consider a non linear version
of CCA using kernel mapping (see §2.2 and §4). Prior to describe our
matching strategy in §2.3, we will review kernel mapping via kernel
principal component analysis (KPCA) in §2.2. The latter makes it
possible to control dimensionality of data and helps defining new
mapping spaces where CCA transformations become non-linear.

2.2. Kernel Mapping

Let Φ be an implicit mapping (defined via a kernel function
K(x, y) = Φ(x)′Φ(y)) from the input space X into a high di-
mensional feature space H. Assume the training set L is cen-
tered in the mapping space H, i.e.,

PN
i=1 Φ(xi) = 0. KPCA

finds principal orthogonal projection axes by diagonalizing the
covariance matrix M = (1/N)

PN
i=1 Φ(xi)Φ(xi)

′. The princi-
pal orthogonal axes, denoted {Vk, k = 1, ..., N}, can be found
by solving the eigenproblem MVk = λkVk, where Vk, λk are,
respectively, the kth eigenvector and its underlying eigenvalue.
It can be shown (see for instance [11]) that the solution of the
above eigenproblem lies in the span of the training data, i.e.,
∀k = 1, ..., N, ∃αk1, ..., αkN ∈ R s.t. Vk =

PN
j=1 αkjΦ(xj),

where αk = (αk1, ..., αkN ) are found by solving the eigenproblem
Kαk = λkαk. Here K is the Gram matrix on the centered data in
L (resp. R) in the feature space. In case the data are not centered,
this matrix is defined as

Kij =

fi
Φ(xi) −

1

N

X
k

Φ(xk), Φ(xj) −
1

N

X
k

Φ(xk)

fl
,

where 〈·, ·〉 denotes the inner product. Each data x ∈ L is mapped
into ψ(x) ∈ R

h, where ψ(x) =
`
〈x, V1〉, ..., 〈x, Vh〉

´
′ (h � N ).

The same KPCA mapping process is achieved for data y ∈ R. CCA
is now learned on ψ(L), ψ(R) ⊂ R

h.

2.3. Synchronous Frame-Based Object Matching

Given two frames belonging to the same time stamp t, and let O� ⊂
L be an object from the left hand side view and {Oi

r} ⊆ R the
underlying candidate matching objects in the right-hand side view.
One finds the corresponding object OJ

r ∈ {Oi
r}, by minimizing the

following criterion:

J = arg min
i

1

|O�| × |Oi
r|

X
x ∈ O�,
y ∈ Oi

r

‚‚‚‚ψ(x)′ P� − ψ(y)′ Pr

‚‚‚‚
2

,

(3)
where ‖x‖2 =

P
j x2

j is theL2 norm and |O| denotes the cardinality
of O. Let p1 be the probability of success of this procedure. When
repeated through n frames, this random process is seen as a binomial
random variable (denoted X1 → B(n; p1)) whose parameter p1 is
the probability, given an object in the left-hand side view, that a good
match is found. In practice (see experiments), p1 does not exceed
0.73, so a better stochastic voting procedure is introduced in §3 and
proven to be theoretically well grounded .

3. STOCHASTIC VOTING

LetO� be an object in the left view and {Oi
r} ⊆ R the set of candi-

date matches. Instead of doing matching on individual synchronous
pairs separately, a better tracking strategy consists in declaring OJ

r

as a good match if and only if the number of timesOJ
r was chosen as

a match (through n frame trials) is bigger than the number of times
any other objectOj

r (j �= J) is chosen. This procedure is robust and
we will show that when n (and p1) are sufficiently large, it converges
with high probability to nearly perfect tracking results.

Consider O� and {Oi
r} ordered such that O1

r (i.e. J = 1) is
the right match to O� (according to an existing ground truth). Let
X1, X2,...,Xm be m binomial random variables (Xi → B(n; pi)
and m is the maximal number of objects in a given frame, in our
experiments m = 5). Here X1 stands for the number of times the
good match (i.e. O1

r ) is found after n trials whileXj (j �= 1) stands
for the number of times the wrong match (i.e. Oj

r) is found after n
trials too.

Following the above stochastic voting strategy, its probability of
success is defined as P (X1 > X2 + ... + Xm). Here P is the joint
probability distribution of X1, ..., Xm. Now, we provide our main
result which allows us under some conditions to lower bound the
probability of success when using the voting strategy.

Proposition 1 Consider X1,...,Xm as m binomial random vari-
ables with parameters p1,...,pm respectively. If p1 ∈ [0, 1] is at least
− log(δ/2)

2n
+ 1

2
, then

P

„
X1 > X2 + ... + Xm

«
≥ 1 − δ (4)

where δ � 1 is a fixed error rate.

Proof 1 The left-hand side of the above inequality is equal to

X
k1 + ... + km = n
k1 > k2 + ... + km

P

„
X1 = k1, ..., Xm = km

«

= P

„
X1 > n

2
, X2 + ... + Xm < 1 − n

2

«

= P

„ nX
i

Zi ≥
n

2

«
, here X1 =

nX
i

Zi, Zi → B(1, p1)

= 1 − P

„
p1 −

1

n

nX
i

Zi ≥ p1 −
1

2

«

≥ 1 − 2 exp

„
− 2 n (p1 −

1

2
)2

«
(by Hoeffding’s inequality)

The sufficient condition is to choose p1 such as

2 exp

„
− 2 n (p1 −

1

2
)2

«
≤ δ ⇒ p1 ≥ −

log(δ/2)

2n
+

1

2

and when n → +∞ and if p1 is at least equal to 1
2
then

P

„
X1 > X2 + ... + Xm

«
−→

n→+∞

1 �

4. EXPERIMENTS

We tested our method on a highway traffic data video segment ex-
tracted from the Next Generation Simulation (NGSIM) project [12].
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The dataset is built using eight slightly overlapping top views along
several highways and roads. We used a 120 seconds fragment (1200
video frames) from an approximate 700-meters, two to three lane ar-
terial segment of Peachtree Street, Midtown, Georgia. For matters of
space we present here results only for two cameras (however, we ob-
tain similar results for all camera pairs). The memory requirements
of the algorithm are reasonable: we only need to store the current
frame for each camera view. Our implementation use Python Imag-
ing Library2, reaching an average speed of 70 frames per second on
a 2.7 GHz Pentium-M processor.

Object track data for each camera were kindly provided by Im-
age Solution Lab — EADS Innovation Works (see Fig. 1 for an
example). Movement detection and tracking is based on statistical
estimation of background pixels [13], tensor voting [5] and spatio-
temporal segmentation [6].

Fig. 1. A two camera view of a highway (traffic video surveillance).
Moving vehicles are visible as red bounding boxes; the vertical lines
mark the camera overlapping region.

We built a ground truth database of 50 object tracks observed
synchronously in both cameras. The overlapping area is manually
defined by inspecting the two videos. In our case, since the zone
of interest in the image is the highway, two vertical lines are suffi-
cient in order to describe the common region. Each object traverses
the overlap area in an average number of 20 frames. We divide the
ground truth randomly in two equal parts and use these indepen-
dently for training and testing. For each frame and each object in
the overlap zone we extract the SIFT keypoints using the method de-
scribed in [7]. For each track in the training set and for each frame
we assign pairs of keypoints by visual matching, obtaining the two
sets of keypoints (L and R in §2) that are used in order to train the
CCA transformation.

Given a time stamp t, pairs of “test tracks” are used in order
to generate sets of test problems. A test problem consists in fixing
an object in one view and finding its corresponding match from the
set of objects in the other view. Using this procedure we generated
667 test problems, through different frames, from both directions;
left-to-right and right-to-left. For each test problem, the keypoint
description of each object is projected (using the matrices Pl and
Pr) into the CCA space. If the input random variables are com-
pletely correlated, the two representations should be identical. Since
this is not usually the case, the correlation coefficient for each pair
of coordinates in the CCA space is slowly decreasing. Since we use
the average Euclidian distance to measure the dissimilarity between
two objects, we expect that coordinates that correspond to low cor-
relations behave more like noise with respect to the prediction error.
We keep thus for further use only the coordinates that correspond to
a correlation coefficient larger than a fixed value, denoted by ρ in the
following.

First, as a baseline, we test the linear CCA. We use as measure
of success the error rate (number of wrong predictions divided by the

2http://www.pythonware.com/products/pil
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Fig. 2. Prediction error rate versus correlation coefficient ρ for linear
CCA. For each value of ρ we keep only the dimensions that corre-
spond to a correlation larger than ρ.

number of test problems). In Fig. 2 we show the error rate versus the
correlation coefficient ρ. As expected, the minimum error (ε = 0.43)
is obtained for an intermediary value (ρ = 0.75). For larger values
of ρ too much information is eliminated, thus the error increases
while for lower values of ρ, too many noisy (useless) dimensions are
decorrelated, also increasing the error rate.
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Fig. 3. Prediction error rate for the kernelized version of the CCA
algorithm. The vertical axis represents the correlation coefficient ρ
and the horizontal axis represents the number of dimensions kept
after KPCA. Darker gray values means lower error rates.

Next, we test the kernelized version of the CCA algorithm. We
expect to obtain lower error rates; however, there are two parame-
ters to take into account: the correlation coefficient after the CCA
step (ρ) and the number of dimensions to keep after the Kernel PCA
(denoted by h in §2). We use the Laplacian kernel, K(x,y) =
exp(−γ ||x − y||), with a large value of the scale parameter (γ =
100). This kernel has been advocated for use in image retrieval [14]
and for large values of γ behaves like the triangular kernel, inducing
an independence of the results with respect to the scale of data in the
description space [15]. In Fig. 3 we present the error rates versus
ρ (vertical axis) and h (horizontal axis). As we see, for h > 150
the error rates are rather uniform and not particularly small; SIFT
features have 128 dimensions: keeping many dimensions does not
improve the error rates. We also notice smaller errors (darker grey
values) on the main diagonal (top-left to bottom-right). This is ex-
plained by the trade-off between the number of dimensions kept after
KPCA and the values of ρ; keeping a small number of dimensions
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after KPCA eliminates valuable informations, thus small values of ρ
(which does not eliminate further dimensions) provides smaller er-
ror rates. Conversely, if a large number of dimensions is kept after
KPCA, then many of them will be uncorrelated after CCA and thus
a smaller error is expected after eliminating some of them (large ρ).
The minimum error rate is achieved for h = 20 and ρ = 0.5, the
underlying sections are shown in Fig. 4 and Fig. 5.
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Fig. 4. Prediction error rate versus correlation coefficient ρ for ker-
nelized CCA (h = 20). The dotted line represent the best result
achieved by the linear CCA (see Fig. 2). The smallest error obtained
is 0.27 (compared to 0.43 for the linear version).

Regarding different settings, the best error rate we obtain is 0.27,
which implies a probability of successful matches p1 = 0.73. Re-
call from §3 that the matching procedure is applied on n frames (in
our experiments n = 20). According to Prop. 1, the event of cor-
rect matching (after n frames) occurs with a likelihood larger than
1 − δ = 0.9998. The theoretical bound (shown in Prop. 1) is well
corroborated as no matching failures are encountered in practice.
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Fig. 5. Prediction error rate versus h for kernelized CCA (ρ = 0.5).
The best error rate is obtained for h = 20. For smaller h too much
information is eliminated, while for larger h the added dimensions
are not necessarily improving the results.

5. CONCLUSION

We introduced a new object matching and tracking approach for mul-
tiple video streams, based on a kernelized version of canonical cor-
relation analysis. Our method uses only the visual descriptions of
objects and does not rely on camera calibration or any prior model
about scene structures (geometry, etc.) in order to find object corre-
spondences. Experiments conducted on real traffic datasets indicate

that the method is highly effective for vehicle matching in multiview
sequences. Further work is necessary in order to asses the suitabil-
ity of the method for cluttered scenes including deformable, moving
and varying scale objects; all these rise interesting issues for a future
work.

6. REFERENCES

[1] Kideog Jeong and Christopher Jaynes, “Object matching in
disjoint cameras using a color transfer approach,” Machine
Vision and Applications, vol. 19, no. 5-6, pp. 443–455, 2008.

[2] Shan Y., Sawhney H.S., and Kumar R., “Vehicle identifica-
tion between non-overlapping cameras without direct feature
matching,” in Proc. of the ICCV, 2005.

[3] Axel Baumann, Marco Boltz, Julia Ebling, Matthias Koenig,
Hartmut Loos, Marcel Merkel, Wolfgang Niem, Jan Karl
Warzelhan, , and Jie Yu, “A review and compari-
son of measures for automatic video surveillance systems,”
EURASIP Journal on Image and Video Processing, 2008,
doi:10.1155/2008/824726.

[4] R. Venkatesh Babu, Patrick Perez, and Patrick Bouthemy, “Ro-
bust tracking with motion estimation and local kernel-based
color modeling,” Image and Vision Computing, vol. 25, no. 8,
pp. 1205–1216, 2007.

[5] G. Medioni and P. Kornprobst, “Tracking segmented objects
using tensor voting.,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2000.

[6] J. Shi and J. Malik, “Motion segmentation and tracking using
normalized cuts,” in International Conference on Computer
Vision, 1998.

[7] David G. Lowe, “Distinctive image features from scale-
invariant keypoints,” International Journal of Computer Vi-
sion, vol. 60, no. 2, pp. 91–110, 2004.

[8] Martin Hofmann Dejan Arsic, Bjorn Schuller, and Gerhard
Rigoll, “Multi-camera person tracking and left luggage detec-
tion applying homographic transformation,” in IEEE Interna-
tional Workshop on Performance Evaluation of Tracking and
Surveillance, 2007.

[9] Malte Kuss, Malte Kuss, Thore Graepel, and Thore Graepel,
“The geometry of kernel canonical correlation analysis,” Tech.
Rep., Max Planck Institute for Biological Cybernetics, 2003.

[10] D. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical
correlation analysis; an overview with application to learning
methods,” Tech. Rep., University of London, 2003.

[11] Bernhard Scholkopf, Er Smola, and Klaus robert Muller,
“Nonlinear component analysis as a kernel eigenvalue prob-
lem,” Neural Computation, vol. 10, pp. 1299–1319, 1998.

[12] V. Alexiadis, J. Colyar, J. Halkias, R. Hranac, and G. McHale,
“The next generation simulation program,” ITE Journal, vol.
74, no. 8, pp. 22–26, 2004.

[13] C. Stauffer and W.E.L Grimson, “Adaptive background mix-
ture models for real-time tracking,” in IEEE Conf. on Com-
puter Vision and Pattern Recognition, 1999.

[14] O. Chapelle, P. Haffner, and V.N. Vapnik, “Support-vector ma-
chines for histogram-based image classification,” IEEE Trans-
actions on Neural Networks, vol. 10, no. 5, pp. 1055–1064,
1999.

[15] H. Sahbi and F. Fleuret, “Kernel methods and scale invariance
using the triangular kernel,” Tech. Rep., INRIA, 2004.

2112


