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ABSTRACT

This paper presents a palmprint recognition algorithm using
Principal Component Analysis (PCA) of phase information in 2D
(two-dimensional) Discrete Fourier Transforms (DFTs) of palm-
print images. To achieve highly robust palmprint recognition, the
proposed algorithm (i) limits the frequency bandwidth, and (ii) av-
erages phase spectra using multiple palmprint images captured from
the same hand at an enrollment stage. Through a set of experiments,
we demonstrate that the proposed method can significantly reduce
computational cost without sacrificing recognition performance
compared with our previous work using Phase-Only Correlation
(POC) — an image matching technique using the phase components
in 2D DFTs of given images. Also, the resulting performance is
much higher than those of conventional palmprint recognition al-
gorithms which apply PCA to palmprint images, or phase spectra
directly.

Index Terms— palmprint recognition, phase information, prin-
cipal component analysis, biometrics

1. INTRODUCTION

Biometric authentication has been receiving extensive attention over
the past decade with increasing demands in automated personal iden-
tification. Among many biometrics techniques, palmprint recogni-
tion is one of the most reliable approaches, since a palmprint con-
tains many features such as principle lines, ridges, minutiae points,
singular points and texture, and is expected to be more distinctive
than a fingerprint [1].

We have proposed palmprint recognition algorithms using
Phase-Only Correlation (POC) — an image matching technique
using the phase components in 2D Discrete Fourier Transforms
(DFTs) of given images [2, 3]. These algorithms have efficient
recognition performance compared with a Gabor feature-based al-
gorithm [4]. However, high computational cost due to numerous
calculations of 2D DFTs can be a drawback of POC-based method
when we identify an input palmprint image from a huge database.

Addressing the problem, this paper proposes a palmprint recog-
nition algorithm which performs Principal Component Analysis
(PCA) on Fourier phase information of the palmprint images. In-
stead of applying PCA to phase spectra directly [5], the proposed
algorithm (i) limits the frequency bandwidth, and (ii) averages phase
spectra using multiple palmprint images captured from the same
hand at an enrollment stage. These two techniques have an impor-
tant role in eliminating meaningless frequency components which
degrade recognition performance, and make possible to achieve
highly robust palmprint recognition. Through a set of experiments,

Fig. 1. Flow diagram of the proposed algorithm.

we demonstrate that the proposed method can significantly reduce
computational cost without sacrificing recognition performance
compared with the POC-based algorithms. Also, the resulting
performance is much higher than those of conventional palmprint
recognition algorithms which apply PCA to palmprint images [6],
or phase spectra directly [5].

2. ENROLLMENT STAGE

The proposed algorithm consists of the enrollment stage and the
matching stage (as illustrated in Fig. 1). This section describes the
enrollment stage which consists of (i) preprocessing, (ii) phase aver-
aging and (iii) PCA and feature extraction. We assume that multiple
palmprint images are captured from the same hand at this stage.

2.1. Preprocessing

The preprocessing has three steps as follows:

1. A palmprint region is extracted from each original palmprint
image. In order to extract the center part of palmprint for
accurate matching, we employ the method described in [4].
This method defines the palmprint region as shown in Fig.
2 (a). We can normalize the rotation by using gaps between
fingers as reference points. Fig. 2 (b) shows the extracted
palmprint region, where the size of palmprint region is 128×
128 pixels in this paper.
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Fig. 2. Enrollment stage: (a) input palmprint image (384 × 284 pixels) and extracted palmprint region (128 × 128 pixels), (b) extracted
palmprint region, (c) local block images fi(n1, n2), (d) absolute value of averaged phase |Θi(k1, k2)|.
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Fig. 3. Amplitude characteristic of extracted palmprint region: (a)
extracted palmprint region, (b) amplitude spectrum (the center is
zero frequency component).

2. Nonlinear distortion may occur among palmprint images cap-
tured at different time. To approximate such distortion by the
translational displacement, we divide the extracted palmprint
region into multiple small blocks. Assume that the size of
a block is B1 × B2 pixels. Let fi(n1, n2) be one image
block extracted from the palmprint region (see Fig. 2 (c)),
where the index ranges are n1 = −M1, · · · , M1 (M1 > 0),
n2 = −M2, · · · , M2 (M2 > 0) for mathematical simplic-
ity, and, hence B1 = 2M1 + 1, B2 = 2M2 + 1. In our
experiments, B1 = B2 = 32. Also, i = 1, · · · , P is in-
dex of registered person, and P is the number of persons in
the database. The following steps including Section 2.2 and
Section 2.3 are repeated for each block position.

3. This step first aligns the translational displacements among
the image blocks extracted from the same position of a series
of palmprint images of the same person, then, calculates the
2D DFTs of each block. The translational displacement can
be estimated using POC function [7]. Our observation shows
that the 2D DFT of a palmprint image contains meaningless
high frequency components as shown in Fig. 3. We can im-
prove the matching performance by eliminating the high fre-
quency components. Let Fi(k1, k2) denote the band-limited
frequency spectrum of fi(n1, n2). Fi(k1, k2) is given by

Fi(k1, k2) =

M1X
n1=−M1

M2X
n2=−M2

fi(n1, n2)W
k1n1
B1

W k2n2
B2

= AFi(k1, k2) exp (jθFi(k1, k2)) , (1)

where k1 = −K1, · · · , K1 (0 < K1 ≤ M1), k2 =
−K2, · · · , K2 (0 < K2 ≤ M2), WB1 = exp (−j2π/B1),
and WB2 = exp (−j2π/B2). AFi(k1, k2) is amplitude

component and θFi(k1, k2) is phase component. Thus, the ef-
fective size of frequency spectrum is given by L1 = 2K1+1,
L2 = 2K2 + 1.

2.2. Phase averaging

The meaningless frequency components are not completely elimi-
nated by only limiting the frequency band as Eq. (1). Phase compo-
nents in low-S/N frequency band behave like random noise. To sup-
press such unreliable phase components, we take an average of the
phase components exp (jθFi(k1, k2)) across multiple palmprint im-
ages captured from the same hand. The average is calculated using
the image blocks extracted from the same position of each palmprint
image. Let Θi(k1, k2) denote the averaged phase. Absolute values
of averaged phase Θi(k1, k2) shown in Fig. 2 (d) demonstrate that
the meaningless phase components are reduced to almost zero.

2.3. PCA and feature extraction

This step is to extract feature vectors corresponding to individual
palmprints using PCA of averaged phase Θi(k1, k2). The following
describes the details of this step.

1. Let ψ(k1, k2) and Φi(k1, k2) denote the averaged value of
Θi(k1, k2) calculated across all persons in the database, and
the difference between Θi(k1, k2) and ψ(k1, k2), respec-
tively. ψ(k1, k2) and Φi(k1, k2) are given by

ψ(k1, k2) =
1

P

PX
i=1

Θi(k1, k2), (2)

Φi(k1, k2) = Θi(k1, k2) − ψ(k1, k2). (3)

2. The covariance matrix C is given by

C =

PX
i=1

Φi [Φi]
T , (4)

where Φi is the L1 · L2 × 1 vector, corresponding to the
L1 × L2 matrix Φi(k1, k2). We compute eigenvalues and
eigenvectors. Let the dth largest eigenvalue be denoted by
λd, and the eigenvector corresponding to λd be denoted by
ud.

3. We reduce the dimensionality of an eigenspace from L1 · L2

to D by taking only D eigenvectors corresponding to largest
D eigenvalues. A feature vector Ωi is given by

Ωi = [ωi,1, ωi,2, · · · , ωi,D]T , (5)

1974



(a) (b) (c)

ω1

ω2

ωD

Ω

21
nn

Min = 1.46

1n

2n
),( 21 nn

),( 21 nn

),( 21 nn

, 21 nn

0

0.5

1

1.5

2

φ i ,( 21 nn

−1

0

1

−1

0

1

) [rad]

Min = 0.83

0

0.5

1

1.5

2

1n 2n
−1

0

1

φ i ,( 21 nn ) [rad]

−1

0

1

Fig. 4. Matching stage: (a) feature vector generation, (b) φi(n1, n2) in genuine matching, (c) φi(n1, n2) in impostor matching.

ωi,d =
〈ud,Φi〉
L1L2

, (6)

where d = 1, · · · , D, and 〈., .〉 denotes inner product. ud is
the complex conjugate of ud. The averaged value ψ(k1, k2),
the eigenvector ud, and the feature vector Ωi are enrolled in
the database.

3. MATCHING STAGE

This section describes the matching stage which consists of (i) pre-
processing, (ii) feature extraction and (iii) matching score calcula-
tion. The details of each step are described in the following.

3.1. Preprocessing

This step is performed in much the same way as that of the enroll-
ment stage described in Section 2.1.

1. A palmprint region is extracted from an input palmprint im-
age.

2. The palmprint region is divided into multiple small blocks.
The size of a block is B1 × B2 pixels. Let g(n1, n2) be
one image block extracted from the palmprint region. The
following steps including Section 3.2 are repeated for each
block.

3. Let G(k1, k2) denote the band-limited frequency spectrum of
g(n1, n2). G(k1, k2) is given by

G(k1, k2) =

M1X
n1=−M1

M2X
n2=−M2

g(n1, n2)W
k1n1
B1

W k2n2
B2

= AG(k1, k2) exp (jθG(k1, k2)) , (7)

where AG(k1, k2) is amplitude component and θG(k1, k2) is
phase component.

3.2. Feature extraction

A correlation function is defined for dealing with the translational
displacement between image blocks. A feature vector correspond-
ing to the input palmprint image is obtained from the correlation
function.

1. Let Φ(k1, k2) denote the difference between exp (jθG(k1, k2))
and ψ(k1, k2) as follows:

Φ(k1, k2) = exp (jθG(k1, k2)) − ψ(k1, k2). (8)

2. Using 2D inverse DFT, the correlation function ωd(n1, n2) is
defined as

ωd(n1, n2) =
1

L1L2

K1X
k1=−K1

K2X
k2=−K2

ud(k1, k2)Φ(k1, k2)

×W−k1n1
L1

W−k2n2
L2

, (9)

where n1 = −K1, · · · , K1, n2 = −K2, · · · , K2, and hence
L1 = 2K1 + 1, L2 = 2K2 + 1. ud(k1, k2) is the L1 × L2

matrix corresponding to the L1 · L2 × 1 vector ud.

3. In the case of genuine matching, the feature vector Ωi appears
on a point in ωd(n1, n2) which corresponds to the transla-
tional displacement between image blocks. (If there is no
displacement between the input palmprint image and the im-
ages captured in the enrollment stage, the feature vector Ωi

will appear at the origin, (n1, n2) = (0, 0), of ωd(n1, n2).)

We can achieve translation-invariant matching by generating
feature vectors from every point of ωd(n1, n2). A feature
vector Ωi corresponding to a point (n1, n2) is given by

Ωn1,n2 = [ω1(n1, n2), ω2(n1, n2), · · · , ωD(n1, n2)]
T .
(10)

Fig. 4 (a) shows an example of feature vector generation
when L1 = L2 = 3.

3.3. Matching score calculation

The angle φi(n1, n2) between Ωi and Ωn1,n2 is given by

φi(n1, n2) = arccos

„ 〈Ωi,Ωn1,n2〉
||Ωi||||Ωn1,n2 ||

«
. (11)

The matching score is defined as the average value of a set of min-
imum values of φi(n1, n2) calculated from every block pair. Figs.
4 (b) and (c) show examples of φi(n1, n2) in genuine matching and
impostor matching, respectively (L1 = L2 = 3). In the case of
genuine matching, the distinctive minimum value can be found in a
point corresponding to displacement between image blocks, while,
with impostor matching, φi(n1, n2) has uniform, large values.

4. EXPERIMENTS AND DISCUSSION

This section describes a set of experiments using the PolyU palm-
print database [8] for evaluating the performance of the proposed
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Table 1. Experimental results of algorithm (A).

the number of feature dimensions 50 100 150 200 250 300

EER [%] 22.309 21.048 20.652 20.292 20.142 20.135

Table 2. Experimental results of algorithm (C).

the number of feature dimensions 50 100 150 200 250 300

EER [%] 0.628 0.131 0.087 0.065 0.066 0.067

the number of 2D DFTs 816 1,616 2,416 3,216 4,016 4,816

palmprint recognition algorithm. This database consists of 7,752
images (384 × 284 pixels) with 386 subjects and about 20 differ-
ent images captured at different times (1st time and 2nd time) of
each person. In this paper, we select 300 persons from the database.
For each 300 person, we use five images captured at 1st time in the
enrollment stage, and use five images captured at 2nd time in the
matching stage.

In the experiments, the matching performance is evaluated by
the Equal Error Rate (EER), which is defined as the error rate where
the False Non-Match Rate (FNMR, the probability that an autho-
rized person is falsely rejected) and the False Match Rate (FMR, the
probability that a nonauthorized person is falsely accepted as an au-
thorized person) are equal. We first evaluate the genuine matching
score for all the possible combinations of genuine attempts (5 × 300
= 1,500 attempts). Next, we evaluate the impostor matching score
for all the possible combinations of impostor attempts (5 × 299 ×
300 = 448,500 attempts).

We compare three different algorithms: (A) Lu’s algorithm
which applies PCA to palmprint images [6], (B) the POC-based
algorithm [3], (C) the proposed algorithm. Table 1 shows EERs
of the algorithm (A) with different feature dimensions. The EER
of the POC-based algorithm (B) is 0.013 % and the number of 2D
DFTs is 9,916 in the matching stage. Table 2 shows EER and com-
putational cost of 2D DFT calculations (in Eq. (7) and Eq. (9)) in
the matching stage of the proposed algorithm (C) when changing
the number of feature dimensions D and the bandwidth parameters
K1/M1 = K2/M2 � 0.6 (L1 = L2 = 19). When D = 200, the
proposed algorithm shows the best recognition performance (EER =
0.065 %, and the number of 2D DFTs is 3,216). The proposed algo-
rithm (C) exhibits better recognition performance, since the EER is
very low compared with the conventional algorithm (A). In addition,
the proposed algorithm (C) can significantly reduce computational
cost without sacrificing recognition performance compared with the
POC-based algorithm (B).

Table 3 summarizes the results when the algorithms (A), (B)
and (C) show the lowest EERs, respectively. In the proposed algo-
rithm (C), we compare four different cases: (i) with bandlimiting and
phase averaging, (ii) with only bandlimiting (and without phase av-
eraging), (iii) with only phase averaging (and without bandlimiting),
(iv) without bandlimiting and phase averaging [5]. As is observed
in Table 3, limiting the frequency bandwidth and averaging phase
components play an important role in improving recognition perfor-
mance.

5. CONCLUSION

This paper proposed a palmprint recognition algorithm using Prin-
cipal Component Analysis (PCA) of phase information. Limiting
the frequency band and averaging phase spectra can reduce harm-
ful effects of meaningless high frequency components. Experimen-

Table 3. Summary of results.

Algorithm EER [%] the number of 2D DFTs

(A) 20.135 —

(B) 0.013 9,916

(C)

(i) 0.065 3,216
(ii) 0.166 3,216
(iii) 0.212 3,216
(iv) 1.670 3,216

tal evaluation demonstrates that the proposed method can signifi-
cantly reduce computational cost without sacrificing recognition per-
formance compared with our previous work using Phase-Only Cor-
relation (POC). Also, the resulting performance is much higher than
those of conventional palmprint recognition algorithms which apply
PCA to palmprint images, or phase spectra directly.
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