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Abstract
In this paper, a novel discriminant feature 

extraction algorithm employing center-based distance 
is proposed for face recognition. This new method, 
which is a supervised linear dimensionality reduction 
and feature extraction approach, computes the center-
based distance between each training sample-pairs in 
the same class and the distance between each training 
sample-pair belonging to different classes. Then the 
high-dimensional data are embedded into a low-
dimensional space, preserving the within-class 
geometric structure on a submanifold via maximum 
variance projection. Many experiments on ORL and 
Yale face database indicate that this method is highly 
effective. 

1. Introduction
Face recognition has received extensive attention in 

recent years. Over the past 20 years, numerous 
algorithms have been proposed, among which the most 
well known ones are Principal Component Analysis 
(PCA) [1] and Linear Discriminant Analysis (LDA) [2, 
3]. However, both assume an approximate Gaussian 
distribution of each class in the data space, and both 
may fail to work when the data are distributed in a 
nonlinear way. Recent studies reveal that face images, 
parameterized by some continuous variables, usually 
belong to a submanifold of intrinsically low dimension 
[4, 5-11]. In this respect, a number of nonlinear 
embedding methods have emerged. The representative 
ones include Isomap [6], local linear embedding (LLE) 
[5, 7], Laplacian eigenmaps (LE) [8], local tangent 
space alignment (LTSA) [12], etc. These algorithms 
differ in the representations of local geometries that 
they attempt to preserve. While these manifold 
learning methods generate satisfying results in 
dimensionality reduction and manifold visualization, 
these approaches does not define how to project new 
data into the embedded space, so they are not suitable 
for recognition problems in practical application. As a 
result,  linear approximation approaches to nonlinear 
embedding [13] have been sought, such as LPP [14] 
and LEA [15], which are sufficiently effective to deal 

with practical problems in machine learning and 
computer vision. 

Despite the differences of the aforementioned 
approaches, they can all be unified within the graph-
embedding (GE) framework and its extensions [16]. 
Furthermore, GE framework offers a general platform 
for developing new dimensionality reduction 
algorithms. 

To fulfill the task of classification and preserve 
within-class property, we propose a novel algorithm 
for linear dimensionality reduction and feature 
extraction within the framework of GE. The new 
algorithm exhibits several attractive properties: 
(a) The preservation of within-class structure: The new 
algorithm preserves center-based distances, which can 
capture more extract information than Euclid distance 
between any two data points with the same class.  
(b) The discriminating power in classification: On the 
assumption that the data distributed on different 
submanifolds belong to different classes, we want to 
map the inputs from different manifolds as far as 
possible, i.e. maximize the pairwise distances 
belonging to different classes in the low dimensional 
subspace. Besides, within-class intrinsic geometric 
structures in the input space may produce additional 
discriminating power for classification. 
(c) The employment of the graph embedding (GE) 
framework: According to the GE framework, we 
define an intrinsic graph that describes within-class 
geometry, and a penalty graph that describes the 
separability of between-class data, as illustrated in 
Fig.1.  

In Fig.1, the new algorithm defines a corresponding 
intrinsic graph that describes the center-based distance 
between each training sample-pairs in the same class, 
with constraints from the penalty graph that 
characterizes a statistical or geometric property of the 
distance between each training sample-pair belonging 
to different classes.
 (d) The applicability in recognition problems: The 
new algorithm is a linear embedding algorithm. Given 
a new high-dimensional data point, it automatically 
finds the corresponding low-dimensional point on 
manifold via the linear projection.  

The rest of this study is organized as follows. In  
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Sec.2, we review the center-based nearest neighbor 
classifier. The proposed algorithm is described in 
detail in Sec.3. In Sec.4, many experiments with face 
image data are carried out to evaluate our new 
algorithm. Finally, the conclusions are summarized in 
Sec.5.

      
   (a)Intrinsic Graph                  (b) Penalty Graph     

Fig.1 Intrinsic Graph (a) and Penalty Graph (b) 

2. Center-based nearest neighbor classifier 
Center-based nearest neighbor classifier [17] 

considers a kind of line for classification. Let be a 

training sample of class c, let be the center of class 
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center-based line(CL) cc
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passing through and , as illustrated in Fig.2. 
This CL is used to capture the information to achieve 
better classification performance. Define distance from 
x to CL as
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where is the projection of x onto the CL, c,ip |||| is

the Euclidean norm. The projection point is
calculated according to the equation 
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where T is the transpose operator.

Fig.2 Distance from x to CL 

3. Discriminant feature extraction based on 
center-based distance 

Suppose we have the original data set X
and the label set .

The goal of linear feature extraction is to learn a 
projection matrix A, which projects to ,

where is the projected data with 
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that in the projected space the data  different classes 
can be effectively discriminated. 
3.1. Within-class structure

Be different from the definition in LPP [14], in 
this paper, the within-class relation matrix W is given 
as below:
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We call )o,(2 c
ji xxd the center-based distance from 

to , which has been defined in Sec.2. This 
distance has more capacity of representation for 
sample classes than the original samples and thus can 
capture more information.  
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Then the within-class of outputs can be rewritten as:  
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The new objective function is constructed to 
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3.2. Dissimilarities among submanifolds  
We can use the sum of the squared distance to 

measure the dissimilarities among submanifolds. We 
can construct a label matrix to mark the label 
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information of each point, where shows the label 
information as follows: 

otherwise1,
label class same  thehaveand if,0 j i
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Then the dissimilarities among submanifolds can be 
defined as the following equation:  
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where Q is a diagonal matrix, i.e. .
j
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3.3. Objective function 
DJ  can be maximized to separate different 

submanifolds further. The latter will be approached by 
keeping the center-based distance between within-class 
samples. So the new algorithm can be expressed as 
follows:  

i,j
ijji

i,j
ijji

n

i,j
jiij

W||x||xW||y||y

||y||y

22

2

.t.s

max
          (9)

(9) reduces to
})({max  TT AXQXAtr                                     (10) 

))2W-SD(())2W-SD((.t.s TTT XXtrAXXAtr
This constrained optimization problem can be 

figured out by enforcing Lagrange multiplier. A 
function J(A) can be linearly constructed by the 
objective function and the constraint: 
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The optimal transformation matrix A can be obtained 
from
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From Eq.(11), it is shown that A is composed of the 

eigenvectors associated with the d top eigenvalues by 
solving the corresponding generalized eigenequation. 

4. Experiments and applications 

In this section, we design experiments to evaluate 
the performance of the new approach, in comparison  
with the performance of PCA, LDA, and SLPP 
(Supervised LPP) [18], on two well-known face image 
databases (ORL and Yale) for face recognition. The K-
nearest neighbor classifier (K=1) is employed for 
simplicity.  
4.1. Experiments on the ORL Database

The ORL database contains images from 40 
individuals, each providing 10 different images. In the 
experiments, images are cropped based on the centers 
of eyes and the cropped images are normalized to the 
40 40 pixel arrays with 256 gray levels per pixel. 
p(=3,5) images per person are randomly selected for 
training and the rest are used for testing. For each 
given p, we average the realizations over 20 random 
splits. Fig.3 illustrates the optimized recognition rates 
versus the variation of dimensions. It shows that the 
new method outperforms the others when the 
dimension is over 62 and 40 respectively, when 3 or 5 
images per person are selected for training. 

The best average results and the standard deviations 
with the corresponding reduced dimensions, listed in 
Tab.1, demonstrate that our proposed method 
consistently outperforms better than PCA, LDE, SLPP.  

Fig.3  Recognition rate versus dimensionality reduction on 
the ORL database: (up) 3 train and (down) 5 train. 

Tab.1 Best recognition rates (percent) with the reduced 
dimensions (in parentheses) of four methods on ORL

Method 3 Train 5 Train 
PCA   79.24 2.40(118)     88.16 2.47(194) 

        LDA     86.93 1.83(39)     94.61 1.51(39) 
        SLPP     79.07 2.34(62)     88.12 2.43(40) 
The proposed method     88.80 1.52(42)     95.75 1.73(39) 
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4.2. Experiments on the Yale Database
The Yale face dataset contains 11 grayscale images 

for each of the 15 individuals. In our experiment, the 
images were also resized to 40 40. 6 images per 
person are randomly selected for training and the rest 
are used for testing. We average the realizations over 
20 random splits. Tab.2 shows the average best 
recognition rates with the reduced dimensions (in 
parentheses) of four methods. As observed in Fig.2, 
this figure indicates that the performance of this new 
method is still better than those of the other three 
methods, only with less dimensionality. 

Several experiments have been carried out on these 
two face databases. The new method performs better 
than PCA, LDA, and SLLE. It is shown that our 
method is more competitive for preserving intrinsic 
structure from raw face images based on center-based 
distance.

Why can our unsupervised method outperform the 
supervised methods LDA and SLPP? In our opinion, 
the possible reason is that our method is more robust 
than the supervised methods to outliers. The outlier 
images may cause errors in the estimate of within-class 
scatter in LDA and computing K-nearest neighbor 
samples within the same class in SLPP, thus, make 
their projection inaccurate. In contrast, our method 
builds the adjacency relationship of data points using 
k-nearest neighbors and groups the data in a natural 
way. Most outlier images of different persons are 
grouped into new different clusters. Furthermore, the 
other important cause is that the abilities of within-
class structure preserving and classification, based on 
the measurement of center-based distances, have been 
combined into the properties of our new algorithm.  

Tab.2 Comparison of four methods on Yale 
Method Recognition  rate       Feature Dimensions
PCA         81.2%       40 

         LDA         94.3%       14  
         SLPP         92.1%       30 
The proposed method         95.2%       13 

 5. Conclusion
A novel discriminant feature extraction algorithm is 

proposed for face recognition. Our method has two 
prominent characteristics. On the one hand, it is a 
representative algorithm based on the preservation of 
the within-class geometric properties. On the other 
hand, it is applicable in recognition, since it maximizes 
the distance between any two samples belonging to 
different classes. And the experiments on face 
recognition demonstrate the effectiveness of our 
algorithm. 
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