
UNEQUAL LOSS-PROTECTED MULTIPLE DESCRIPTION CODING OF SCALABLE

SOURCE STREAMS USING A PROGRESSIVE APPROACH

Majid R. Ardestani
1
, Alireza Aminlou

2
 and Ali Asghar Beheshti Shirazi

1

1
Electrical Engineering Department, Iran University of Science and Technology (IUST), Tehran, Iran,

{m_ardestani, abeheshti}@iust.ac.ir
2
Electrical and Computer Engineering Department, University of Tehran (UT), Tehran, Iran,

a.aminlou@ece.ut.ac.ir

ABSTRACT

An analysis-based approach for unequal loss-protected multiple

description coding (packetization) of the scalable (prioritized /

progressive) source code streams is proposed. For a given number

of packets (descriptions) of the known size, unequal loss-protected

packetization leads to segment the scalable code stream, such that

the source can be reconstructed with the maximum possible

fidelity at the decoder side. Here, we find an analytical relation

between optimal sizes of any two consecutive segments. This idea

yields a low-complexity progressive solution with a performance

close to that of local search [1], which has been approved as an

efficient method to solve the segmentation problem. Simulation

results are used to confirm the efficiency of the proposed method

as compared with the local search algorithm.

Index Terms— Unequal loss-protected packetization,

multiple description coding, scalable code stream, joint source-

channel coding

1. INTRODUCTION

Transmitting an embedded source bit stream (e.g. image and video

scalable bit stream) through a packet erasure network requires an

appropriate packetization scheme so that the different parts of the

data stream with different levels of importance are unequally

protected against packet loss. Forward error correction based

multiple description coding (MD-FEC), proposed by Puri et al. [3],

is an efficient packetization scheme with the capability of unequal

loss protection (ULP).

ULP is a joint source-channel coding problem in which an

embedded source code stream with a known distortion-rate

characteristic is adaptively segmented according to the packet loss

probability distribution function (PDF) of the channel. Then, each

segment is protected with systematic error correction codes (e.g.

Reed-Solomon code). Afterwards, a given number N of equally

important packets of the fixed length L is generated, each carrying

an equal contribution of all the protected segments. The

segmentation process of the embedded bit stream should be carried

out in such a way that the maximum reconstruction fidelity is

obtained at the decoder side.

Many researchers have devised different solutions for the ULP

segmentation problem. In [3], Puri and Ramchandran proposed a

Lagrange multiplier-based algorithm. In [2], Dumitrescu et al.

proposed an O(N2
L

2) algorithm that is close to optimal in general

case and optimal if the distortion-rate fidelity function is convex

and the packet loss probability function is monotonically

decreasing. Mohr et al [4] proposed a suboptimal search algorithm.

In [1] Stankovic et al. proposed an O(NL) local search algorithm

that starts from a solution maximizing the expected number of

received source bits and iteratively improves this solution.

Recently, joint source-channel coding is extended to be used in

applications such as three-dimensional (3D) TV and video gaming

in which 3D objects should be coded in an efficient and error-

resilient manner. There has been a great amount of research for

efficient progressive compression of 3D data sources [6]. MD-FEC

has been recently applied for error-resilient transmission of 3D

data meshes through error-prone networks [7][8][9].

In this work, we analytically derive a relation between optimal

sizes of any two consecutive segments. This idea simply enables

us to progressively approximate the optimal size of each segment

from the previous one. In this way, each valid value for the size of

the first (the most important) segment initiates a progressive

process. To keep the complexity of the search procedure

reasonable, we find a short interval around the optimal value for

the size of the first segment through an optimization analysis.

The rest of this paper is organized as follows. In section 2,

MD-FEC problem formulation is stated. The proposed progressive

method will be discussed in section 3. The simulation results are

presented in section 4 to compare the proposed method with the

local search algorithm in[1]. Finally, section 5 concludes the paper.

2. MD-FEC PROBLEM FORMULATION

In this section, we state the problem of segmentation of a scalable

source code stream (which is previously generated using some

scalable source encoder, e.g. JPEG2000 for image coding) for ULP

packetization. Our notations are essentially the same as [1,2]. We

want to obtain N equally important packets (descriptions) of L

symbols (e.g. bytes) each, from the embedded code stream. First,

we partition the embedded code stream into L segments with non-

decreasing sizes of m1 m2 … mL symbols. Each segment j is

protected with fj = N – mj parity symbols using (N, mj) systematic

Reed-Solomon code. Then, the i'th symbols of all the protected

segments are grouped to form the i'th description, i = 1, 2… N. If n

descriptions are lost at the decoder side, such that fj n > fj+1, then

the first j segments of the source code stream can be reconstructed.

Let pn stand for the probability of losing exactly n packets (out

of N) and ()
=

=
k

n
npkc

0

, k = 0… N. Then, c(fj) is the probability

901978-1-4244-5654-3/09/$26.00 ©2009 IEEE ICIP 2009

that the decoder correctly reconstructs the source up to j'th

segment. Let d(r) denote the distortion-rate function of the scalable

source code stream and let X stand for a random variable whose

value is the number of lost packets. The optimal MD-FEC problem

consists of finding a parity vector f = (f1, …, fL) that minimizes the

expected distortion

() () ()
=

=
L

j
jjavg rdfPfD

0

 (1)

where P0(f) = P(X > f1) = 1 – c(f1), Pj(f) = P(fj+1 < X fj) = c(fj) –

c(fj+1), for j = 1, .., L-1, PL(f) = P(X fL) = c(fL), r0 = 0,

==

−==
j

k
k

j

k
kj fjNmr

11

, for j = 1, .., L.

Although f1… fL, r1... rL, c(.), and d(.) are discrete-valued

quantities, however, we will virtually treat them as continuous-

valued quantities, so that a meaningful derivation can be normally

applied. In this manner, c'(.) and d '(.) denote the derivatives of c(.)

and d(.), respectively, with respect to their input arguments. Note

that c'(f) can be roughly estimated by pf.

3. PROPOSED PROGRESSIVE METHOD

In this section, we will discuss the proposed progressive solution

for the optimization problem stated in section 2. To solve this

problem in an optimal manner, it is necessary to search among all

candidate parity vectors f = (f1… fL) with successively non-

increasing elements and then select the one that minimizes the

expected distortion in (1). This full search method is not applicable

for real-time applications, especially for large values of N and L. In

this section, we will derive an optimality condition which provides

a rather simple relation between any two consecutive elements of f.

This optimality condition yields a low complexity progressive

approach.

Let Di(x), i = 1... L-1, denote the expected distortion of the

received source bit stream when two consecutive elements, fi and

fi+1, of the optimal solution, f, are changed by a minute positive

amount of x. That is,

() { }(),...,..., 1 xfxfDxD iiavgi −+= + (2)

Di(x) is defined such that the overall parity budget remains

unchanged and only a limited number of parameters of f and r are

affected. In fact, fi and mi+1 (fi+1 and mi) are increased (decreased)

by x, and ri is decreased by x. The other parameters remain

unchanged. The optimality condition of f imposes

() ()
0| 0 =

∂

∂
= =

Δ

x
i

i
x

xD
fI (3)

for i = 1, .., L-1. Considering the changing parameters in (3) (i.e.,

fi, fi+1 and ri), we have

()
() () () () () ()[]

() () () ()() () () ()[]
0

1111

0

1111

|

|

=
+++−

=

++−−

∂

+−+−∂
=

∂

++∂
=

x

iiiiiii

x

iiiiii

i

x

rdfcrdfcfcrdfc

x

rdfPrdfPrdfP
fI

As mentioned above, fi (fi+1 and ri) is increased (are decreased) by

x. Hence, (∂ fi / ∂ x) = 1, and (∂ fi+1 / ∂ x) = (∂ ri / ∂ x) = -1. Finally,

the optimality condition is derived as follows

() () () () ()[] ()

() ()[] () () ()
0

11

''

1

1

''

1

'

=

−−−

++−=

+++

+−

iiiii

iiiiii

rdfcrdfcfc

rdfcfcrdfcfI

 (4)

for i = 1, .., L-1. The equation (4) is dependent to only a limited

number of parameters including fi, fi+1, ri-1, ri and ri+1. However,

the parameters rk are calculated based on the fj values, j=1, .., k.

We noted that the value of fi+1 can be calculated by satisfying (4),

when all the previous values of fj, j = 1... i, are available. Hence,

we propose to calculate fi values starting from i = 1 toward i = L,

step-by-step and "progressively". In fact, the equation (4) provides

a relation between any two consecutive elements of the "optimal"

parity vector. It means, if we have f1, then we can find f2. When f2

is found, f3 will be subsequently determined, and so on. Therefore,

if we have the first element of the optimal solution, we can

progressively find the others.

Although, the behavior of Ii(f) functions is not analytically

studied in this research, experimental results, presented in Fig. 1,

show that Ii(f) is a well-behaved function with respect to fi+1 value,

when fi and ri values are known. It is worthy to note that the values

of fi and ri are previously known at each step, and we aim to find

the value of fi+1 which makes Ii(.) zero. Therefore, finding the root

of Ii(.) corresponds to find the fi+1 value given known values of fi

and ri. In Fig. 1, showing Ii(f) for some different values of i, the

horizontal axis is the difference between fi+1 and fi and the vertical

axis is the value of Ii. It is seen that Ii(f) starts from a positive value

and goes to negative values after crossing Ii = 0. We have

observed, zero crossing of Ii(f) functions usually occur for a little

difference between fi+1 and fi, i.e., starting from fi = fi+1 and going

on, we will soon reach the value of fi+1 which is the root of Ii(f) and

is located at a little distance from the starting point (i.e. fi). Hence,

to find the root of each Ii(f) in (4), we use a simple search method

in which fi+1 starts from fi and after a small number of increments,

the root will be met. Another property of Ii(f) functions is that the

difference between fi and fi+1 decreases with i. This can help to

limit the cost of root finding.

2 4 6 8 10 12 14

-5

-4

-3

-2

-1

0

1

2

f
i
 - f

i+1

I i(.
)

i = 1

i = 2

i = 3

i = 4

i = 5

Fig. 1. The typical profile of Ii(f) for some successive values of i,

the horizontal axis is the difference between fi+1 and fi. In this

figure, N = 200, L = 47, and p = 0.2. The similar profiles will be

obtained for other values of these parameters.

The value of f1 can not be found using (4). So, in general case, for

different values of f1, the corresponding f should be found by the

step-by-step progressive process, and Davg should be calculated

using (1). Then, the f1 and the corresponding f suggesting the

minimum Davg are selected as the best solution. However, an

902

approximation method is used to reduce the number of iterations

for finding the optimal value of f1, which will be discussed in the

next subsection. The proposed optimization process can be

summarized as in Fig. 2.

Compute f

*
1 using (7)

r0 = 0;

for f1 = f
*
1 – h/2 to f

*
1 + h/2{

 r1 = N – f1;

 for i = 1 to L - 1{

 fi+1 = fi;

 ri+1 = ri + N – fi+1;

 Compute Ii using (4)

 while (Ii 0 and fi+1 >= 0){

 fi+1 = fi+1 - 1;

 ri+1 = ri+1 + 1;

 Compute Ii using (4)

 }
 }

Compute Davg using (1)

Store Davg along with f = (f1, .., fL)

}

Select f with the least Davg

Fig. 2. The pseudo code of the proposed method to find the

optimum f. The parameter h represents the length of search interval

of f1 around the f*
1, usually h = 10 is appropriate.

3.1. Approximation of Optimal f1 value

So far, we have derived a progressive relation between the sizes of

any two consecutive segments. It means, if we have f1, then we can

obtain f2, then f3 and etc. In this way, each possible value of f1

(from 0 to N-1) can initiate a progressive procedure which results

in a candidate solution of f. Among all possible resultant solutions,

we should select the one that minimizes the expected distortion in

(1). To keep the complexity of the proposed progressive method

low, it is necessary to strictly confine the search interval of f1 as

short as possible. In this subsection, we find a short search interval

around the optimal value of f1.

Making zero the derivation of the expected distortion in (1)

with respect to f1, we obtain

() () ()[] () ()
=

=−−
L

j
jj rdfPdfNdfc

1

'

11

' 0 (5)

Using (5), we can find the optimal value for f1 provided that all

other fj values, j = 2, …, L, are known. To obtain a good

approximation of the optimal f1 value from (5), we set f2 = f3 = …

= fL = fr, where fr is the rate-optimal solution [1], which is the

solution that maximizes the expected number of received source

bits and is simply expressed as [1]

()
=−=

−=
i

n
n

Ni
r piNf

01,...,0
maxarg (6)

In this way, P2 = P3 = … = PL - 1 = 0. Usually, we can consider

d
 '(rL) 0, because rL is sufficiently large. Therefore, (5) is reduced

to

() () ()[] () ()() ()1

'

111

' 0 fNdfcfcdfNdfc r −−≈−− (7)

Let the solution of (7) for f1 is f*
1 which can be found with a simple

search. Afterwards, we can say the optimal f1 value is located in a

short interval around f*
1. To validate this claim, several simulations

have been carried out for various selections of parameters set,

including N, L, c(.), and d(.). Simulation results show that [f*
1 –

h/2, f*
1 + h/2] is an appropriate interval for nearly all natural cases,

in which h is at the order of 10 (albeit, h is dependent to N and L

values to some extent, but not severely).

If the search interval for f1 consists of h points and root finding

search of each Ii(f) runs for an average of b times (successive

increments of starting fi) until the solution of (4) is found, then we

can roughly say that the complexity of the progressive method is

O(hbL). This means that the complexity of the proposed method

does not essentially depend on N and this is a great advantage,

especially for large values of N. As mentioned earlier, the local

search algorithm has a complexity of O(NL) [1] which is linearly

dependent to N.

4. SIMULATION RESULTS

In this section, we compare the performance of our progressive

algorithm with the local search algorithm in [1], which is approved

as an efficient and fast algorithm to solve the ULP packetization

problem. In [1], some of the other well-known approaches have

been compared with the local search algorithm in the sense of

simplicity and efficiency and the local search algorithm has been

recognized as the best one. Hence, we compare our method only

with the local search algorithm. Although the proposed and local

search methods are both applicable on image and video sources,

we compare them for image coding application. To generate an

embedded bit stream from a test image, we have used JPEG2000

scalable coding. Obviously, the comparison can be easily extended

to scalable video codecs, e.g. 3D set partitioning in hierarchical

tree (3D SPIHT), with a known distortion-rate characteristic.

In our simulation, the packet loss PDF is considered as a

binomial distribution with parameters p and N. It means each of N

packets may be independently lost with the probability of p.

Because ATM packets have a payload length of 48 bytes and one

byte is required for sequence number, we have chosen L = 47 bytes

to mimic a practical application. JPEG2000 scalable bit streams of

8 bits per pixel (bpp) gray scale 512×512 Lena, Barbara, and Boat

test images are generated with the Jasper 1.701.0 transcoder [5].

The fidelity of the reconstructed image is measured in peak signal-

to-noise ratio (PSNR). The PSNR-rate curves of JPEG2000 coded

Lena and Barbara images are shown in Fig. 3.

0.5 1 1.5 2 2.5

15

20

25

30

35

40

rate in bpp

P
S

N
R

 in
 d

B

Lena

Barbara

Boat

Fig. 3. The PSNR-rate curves of JPEG2000-coded 8-bpp gray

scale 512×512 Lena, Boat, and Barbara images.

903

The rate after compression and MD-FEC is 8NL / (512×512) in

bpp. Therefore, N value can be used as a rate control parameter. In

Fig. 4, PSNR performance of the proposed progressive method is

compared with the local search algorithm for some values of N.

The packet loss probability, p, is assumed 0.1 and 0.2 for Fig. 4a

and Fig. 4b, respectively. It is seen that the both ULP segmentation

methods have closely the same performances.

50 100 150 200 250 300
18

20

22

24

26

28

30

32

34

36

number of transmitted packets, N

P
S

N
R

 in
 d

B

Lena

Boat

Barbara

(a)

50 100 150 200 250 300
18

20

22

24

26

28

30

32

34

36

number of transmitted packets, N

P
S

N
R

 in
 d

B

Lena

Boat

Barbara

(b)

Fig. 4. The comparison of the proposed method (solid lines

without any marker) with the local search algorithm [1] (circles),

(a) PSNR vs. N for p = 0.1, (b) PSNR vs. N for p = 0.2.

5. CONCLUSIONS

In this paper, we have developed a low complexity progressive

method to determine the suboptimal size of each data segment in

an embedded code stream for the purpose of unequal loss

protected-packetization. The proposed method is based on an

analytically-derived relation between the sizes of any two

successive segments. To keep the number of required progressive

procedures low, a short search interval including the optimal size

of the first segment has been derived analytically.

The search space of the segmentation problem for unequal loss

protected-packetization is a large and "dark" space and none of the

earlier researches have focused on the behavior of the expected

distortion in such a dark space. The proposed method is based on a

smart analysis of the expected distortion in the search space. The

simulation results show that the performance of the proposed

method is similar to performance of the local search algorithm.

Although the proposed method does not outperform the well-

known efficient algorithm of local search developed in [1], but

there is a kind of novelty in developing a new concept; "In the

optimal point of the expected distortion, there is a unique relation

between the sizes of any two consecutive segments." This

noticeable concept leads to this fact that if we have the optimal

size of the first segment, then we can find the sizes of the rest of

the segments by means of a simple progressive procedure. This

means it is not needed to find the whole segments sizes jointly, but

we can apply a kind of separation between them. This fact is a

"brightening torch" to confidently step towards the optimal point

of the expected distortion curve in a completely dark and huge

search space. Hence, this analysis style may be used as a basis for

further developments and improvements in the future.

The complexity of the proposed method is nearly independent

of the number of packets and this is a great advantage, especially

when a large number of packets should be transmitted. The

complexity of the local search algorithm is linearly dependent to

the number of packets.

6. REFERENCES

[1] V. Stankovic, R. Hamzaoui, and Z. Xiong, “Packet loss

protection of embedded data with fast local search,” Proc.

IEEE ICIP-2002, Rochester, NY, Sept. 2002.

[2] S. Dumitrescu, X. Wu, and Z. Wang, “Globally optimal uneven

error-protected packetization of scalable code streams,” Proc.

DCC'02, Snowbird, Utah, Apr. 2002.

[3] R. Puri, K. Ramchandran, “Multiple description coding using

forward error correction codes,” in Proc. 33
rd

 Asilomar Conf.

on Signals and Systems, Pacific Grove, CA, Oct. 1999.

[4] A. E. Mohr, E. A. Riskin, and R. E. Ladner, “Unequal loss

protection: graceful degradation of image quality over packet

erasure channels through forward error correction,” in IEEE

Journal on Selected Areas in Comm, vol. 18, no. 1, pp. 819-

828, 2000.

[5] Available at http://www.ece.uvic.ca/˜mdadams/jasper

[6] J. Peng, C.-S. Kim, and C.-C. J. Kuo, “Technologies for 3D

mesh compression: A survey,” Journal of Visual

Communication and Image Representation, vol. 16, pp. 688–

733, Dec. 2005.

[7] A. Norkin, M. O. Bici, G. Bozdagi Akar, A. Gotchev, and J.

Astola, “Wavelet-based multiple description coding of 3-d

geometry,” in VCIP 2007, San-Jose, US, Jan. 2007.

[8] G. AlRegib, Y. Altunbasak, and J. Rossignac, “An unequal

error protection method for progressively transmitted 3-D

models,” IEEE Trans. Multimedia, vol. 7, pp. 766–776, Aug.

2005.

[9] S. Ahmad and R. Hamzaoui, “Optimal error protection of

progressively compressed 3d meshes,” in Proceedings IEEE

InternationalConference on Multimedia and Expo (ICME’06),

Jul. 2006.

904

