
UNEQUAL LOSS-PROTECTED MULTIPLE DESCRIPTION CODING OF SCALABLE 

SOURCE STREAMS USING A PROGRESSIVE APPROACH 

 

Majid R. Ardestani
1
, Alireza Aminlou

2
 and Ali Asghar Beheshti Shirazi

1
 

 
1
Electrical Engineering Department, Iran University of Science and Technology (IUST), Tehran, Iran, 

{m_ardestani, abeheshti}@iust.ac.ir 
2
Electrical and Computer Engineering Department, University of Tehran (UT), Tehran, Iran, 

a.aminlou@ece.ut.ac.ir 
 

ABSTRACT 
 

An analysis-based approach for unequal loss-protected multiple 

description coding (packetization) of the scalable (prioritized / 

progressive) source code streams is proposed. For a given number 

of packets (descriptions) of the known size, unequal loss-protected 

packetization leads to segment the scalable code stream, such that 

the source can be reconstructed with the maximum possible 

fidelity at the decoder side. Here, we find an analytical relation 

between optimal sizes of any two consecutive segments. This idea 

yields a low-complexity progressive solution with a performance 

close to that of local search [1], which has been approved as an 

efficient method to solve the segmentation problem. Simulation 

results are used to confirm the efficiency of the proposed method 

as compared with the local search algorithm. 

 

Index Terms— Unequal loss-protected packetization, 

multiple description coding, scalable code stream, joint source-

channel coding 
 

1. INTRODUCTION 
 

Transmitting an embedded source bit stream (e.g. image and video 

scalable bit stream) through a packet erasure network requires an 

appropriate packetization scheme so that the different parts of the 

data stream with different levels of importance are unequally 

protected against packet loss. Forward error correction based 

multiple description coding (MD-FEC), proposed by Puri et al. [3], 

is an efficient packetization scheme with the capability of unequal 

loss protection (ULP). 

ULP is a joint source-channel coding problem in which an 

embedded source code stream with a known distortion-rate 

characteristic is adaptively segmented according to the packet loss 

probability distribution function (PDF) of the channel. Then, each 

segment is protected with systematic error correction codes (e.g. 

Reed-Solomon code). Afterwards, a given number N of equally 

important packets of the fixed length L is generated, each carrying 

an equal contribution of all the protected segments. The 

segmentation process of the embedded bit stream should be carried 

out in such a way that the maximum reconstruction fidelity is 

obtained at the decoder side. 

Many researchers have devised different solutions for the ULP 

segmentation problem. In [3], Puri and Ramchandran proposed a 

Lagrange multiplier-based algorithm. In [2], Dumitrescu et al. 

proposed an O(N2
L

2) algorithm that is close to optimal in general 

case and optimal if the distortion-rate fidelity function is convex 

and the packet loss probability function is monotonically 

decreasing. Mohr et al [4] proposed a suboptimal search algorithm. 

In [1] Stankovic et al. proposed an O(NL) local search algorithm 

that starts from a solution maximizing the expected number of 

received source bits and iteratively improves this solution. 

Recently, joint source-channel coding is extended to be used in 

applications such as three-dimensional (3D) TV and video gaming 

in which 3D objects should be coded in an efficient and error-

resilient manner. There has been a great amount of research for 

efficient progressive compression of 3D data sources [6]. MD-FEC 

has been recently applied for error-resilient transmission of 3D 

data meshes through error-prone networks [7][8][9]. 

In this work, we analytically derive a relation between optimal 

sizes of any two consecutive segments. This idea simply enables 

us to progressively approximate the optimal size of each segment 

from the previous one. In this way, each valid value for the size of 

the first (the most important) segment initiates a progressive 

process. To keep the complexity of the search procedure 

reasonable, we find a short interval around the optimal value for 

the size of the first segment through an optimization analysis. 

The rest of this paper is organized as follows. In section 2, 

MD-FEC problem formulation is stated. The proposed progressive 

method will be discussed in section 3. The simulation results are 

presented in section 4 to compare the proposed method with the 

local search algorithm in[1]. Finally, section 5 concludes the paper. 

 

2. MD-FEC PROBLEM FORMULATION 
 

In this section, we state the problem of segmentation of a scalable 

source code stream (which is previously generated using some 

scalable source encoder, e.g. JPEG2000 for image coding) for ULP 

packetization. Our notations are essentially the same as [1,2]. We 

want to obtain N equally important packets (descriptions) of L 

symbols (e.g. bytes) each, from the embedded code stream. First, 

we partition the embedded code stream into L segments with non-

decreasing sizes of m1  m2  …  mL symbols. Each segment j is 

protected with fj = N – mj parity symbols using (N, mj) systematic 

Reed-Solomon code. Then, the i'th symbols of all the protected 

segments are grouped to form the i'th description, i = 1, 2… N. If n 

descriptions are lost at the decoder side, such that fj  n > fj+1, then 

the first j segments of the source code stream can be reconstructed. 

Let pn stand for the probability of losing exactly n packets (out 

of N) and ( )
=

=
k

n
npkc

0

, k = 0… N. Then, c(fj) is the probability 
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that the decoder correctly reconstructs the source up to j'th 

segment. Let d(r) denote the distortion-rate function of the scalable 

source code stream and let X stand for a random variable whose 

value is the number of lost packets. The optimal MD-FEC problem 

consists of finding a parity vector f = (f1, …, fL) that minimizes the 

expected distortion 

( ) ( ) ( )
=

=
L

j
jjavg rdfPfD

0

                             (1) 

where P0(f) = P(X > f1) = 1 – c(f1), Pj(f) = P(fj+1 < X  fj) = c(fj) – 

c(fj+1), for j = 1, .., L-1, PL(f) = P(X  fL) = c(fL), r0 = 0, 

==

−==
j

k
k

j

k
kj fjNmr

11

, for j = 1, .., L. 

Although f1… fL, r1... rL, c(.), and d(.) are discrete-valued 

quantities, however, we will virtually treat them as continuous-

valued quantities, so that a meaningful derivation can be normally 

applied. In this manner, c'(.) and d '(.) denote the derivatives of c(.) 

and d(.), respectively, with respect to their input arguments. Note 

that c'(f) can be roughly estimated by pf. 

 

3. PROPOSED PROGRESSIVE METHOD 
 

In this section, we will discuss the proposed progressive solution 

for the optimization problem stated in section 2. To solve this 

problem in an optimal manner, it is necessary to search among all 

candidate parity vectors f = (f1… fL) with successively non-

increasing elements and then select the one that minimizes the 

expected distortion in (1). This full search method is not applicable 

for real-time applications, especially for large values of N and L. In 

this section, we will derive an optimality condition which provides 

a rather simple relation between any two consecutive elements of f. 

This optimality condition yields a low complexity progressive 

approach. 

Let Di(x), i = 1... L-1, denote the expected distortion of the 

received source bit stream when two consecutive elements, fi and 

fi+1, of the optimal solution, f, are changed by a minute positive 

amount of x. That is, 

( ) { }( ),...,..., 1 xfxfDxD iiavgi −+= +                 (2) 

Di(x) is defined such that the overall parity budget remains 

unchanged and only a limited number of parameters of f and r are 

affected. In fact, fi and mi+1 (fi+1 and mi) are increased (decreased) 

by x, and ri is decreased by x. The other parameters remain 

unchanged. The optimality condition of f imposes 

( ) ( )
0| 0 =

∂

∂
= =

Δ

x
i

i
x

xD
fI                                 (3) 

for i = 1, .., L-1. Considering the changing parameters in (3) (i.e., 

fi, fi+1 and ri), we have 

( )
( ) ( ) ( ) ( ) ( ) ( )[ ]
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As mentioned above, fi (fi+1 and ri) is increased (are decreased) by 

x. Hence, (∂ fi / ∂ x) = 1, and (∂ fi+1 / ∂ x) = (∂ ri / ∂ x) = -1. Finally, 

the optimality condition is derived as follows 

( ) ( ) ( ) ( ) ( )[ ] ( )

( ) ( )[ ] ( ) ( ) ( )
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             (4) 

for i = 1, .., L-1. The equation (4) is dependent to only a limited 

number of parameters including fi, fi+1, ri-1, ri and ri+1. However, 

the parameters rk are calculated based on the fj values, j=1, .., k. 

We noted that the value of fi+1 can be calculated by satisfying (4), 

when all the previous values of fj, j = 1... i, are available. Hence, 

we propose to calculate fi values starting from i = 1 toward i = L, 

step-by-step and "progressively". In fact, the equation (4) provides 

a relation between any two consecutive elements of the "optimal" 

parity vector. It means, if we have f1, then we can find f2. When f2 

is found, f3 will be subsequently determined, and so on. Therefore, 

if we have the first element of the optimal solution, we can 

progressively find the others. 

Although, the behavior of Ii(f) functions is not analytically 

studied in this research, experimental results, presented in Fig. 1, 

show that Ii(f) is a well-behaved function with respect to fi+1 value, 

when fi and ri values are known. It is worthy to note that the values 

of fi and ri are previously known at each step, and we aim to find 

the value of fi+1 which makes Ii(.) zero. Therefore, finding the root 

of Ii(.) corresponds to find the fi+1 value given known values of fi 

and ri. In Fig. 1, showing Ii(f) for some different values of i, the 

horizontal axis is the difference between fi+1 and fi and the vertical 

axis is the value of Ii. It is seen that Ii(f) starts from a positive value 

and goes to negative values after crossing Ii = 0. We have 

observed, zero crossing of Ii(f) functions usually occur for a little 

difference between fi+1 and fi, i.e., starting from fi = fi+1 and going 

on, we will soon reach the value of fi+1 which is the root of Ii(f) and 

is located at a little distance from the starting point (i.e. fi). Hence, 

to find the root of each Ii(f) in (4), we use a simple search method 

in which fi+1 starts from fi and after a small number of increments, 

the root will be met. Another property of Ii(f) functions is that the 

difference between fi and fi+1 decreases with i. This can help to 

limit the cost of root finding. 
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Fig. 1. The typical profile of Ii(f) for some successive values of i, 

the horizontal axis is the difference between fi+1 and fi. In this 

figure, N = 200, L = 47, and p = 0.2. The similar profiles will be 

obtained for other values of these parameters. 

 

The value of f1 can not be found using (4). So, in general case, for 

different values of f1, the corresponding f should be found by the 

step-by-step progressive process, and Davg should be calculated 

using (1). Then, the f1 and the corresponding f suggesting the 

minimum Davg are selected as the best solution. However, an 
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approximation method is used to reduce the number of iterations 

for finding the optimal value of f1, which will be discussed in the 

next subsection. The proposed optimization process can be 

summarized as in Fig. 2. 

 
Compute f

*
1 using (7) 

r0 = 0; 

for f1 = f
*
1 – h/2 to f

*
1 + h/2{ 

  r1 = N – f1; 

  for i = 1 to L - 1{ 

    fi+1 = fi; 

    ri+1 = ri + N – fi+1; 

    Compute Ii using (4) 

    while (Ii  0 and fi+1 >= 0){ 

      fi+1 = fi+1 - 1; 

      ri+1 = ri+1 + 1; 

      Compute Ii using (4) 

    } 
  } 

Compute Davg using (1) 

Store Davg along with f = (f1, .., fL) 

} 

Select f with the least Davg 

 

Fig. 2. The pseudo code of the proposed method to find the 

optimum f. The parameter h represents the length of search interval 

of f1 around the f*
1, usually h = 10 is appropriate. 

 

3.1. Approximation of Optimal f1 value 
 

So far, we have derived a progressive relation between the sizes of 

any two consecutive segments. It means, if we have f1, then we can 

obtain f2, then f3 and etc. In this way, each possible value of f1 

(from 0 to N-1) can initiate a progressive procedure which results 

in a candidate solution of f. Among all possible resultant solutions, 

we should select the one that minimizes the expected distortion in 

(1). To keep the complexity of the proposed progressive method 

low, it is necessary to strictly confine the search interval of f1 as 

short as possible. In this subsection, we find a short search interval 

around the optimal value of f1. 

Making zero the derivation of the expected distortion in (1) 

with respect to f1, we obtain 

( ) ( ) ( )[ ] ( ) ( )
=

=−−
L

j
jj rdfPdfNdfc

1

'

11

' 0           (5) 

Using (5), we can find the optimal value for f1 provided that all 

other fj values, j = 2, …, L, are known. To obtain a good 

approximation of the optimal f1 value from (5), we set f2 = f3 = … 

= fL = fr, where fr is the rate-optimal solution [1], which is the 

solution that maximizes the expected number of received source 

bits and is simply expressed as [1] 

( )
=−=

−=
i

n
n

Ni
r piNf

01,...,0
maxarg                     (6) 

In this way, P2 = P3 = … = PL - 1 = 0. Usually, we can consider      

d
 '(rL)  0, because rL is sufficiently large. Therefore, (5) is reduced 

to 

( ) ( ) ( )[ ] ( ) ( )( ) ( )1

'

111

' 0 fNdfcfcdfNdfc r −−≈−−      (7) 

Let the solution of (7) for f1 is f*
1 which can be found with a simple 

search. Afterwards, we can say the optimal f1 value is located in a 

short interval around f*
1. To validate this claim, several simulations 

have been carried out for various selections of parameters set, 

including N, L, c(.), and d(.). Simulation results show that [f*
1 – 

h/2, f*
1 + h/2] is an appropriate interval for nearly all natural cases, 

in which h is at the order of 10 (albeit, h is dependent to N and L 

values to some extent, but not severely). 

If the search interval for f1 consists of h points and root finding 

search of each Ii(f) runs for an average of b times (successive 

increments of starting fi) until the solution of (4) is found, then we 

can roughly say that the complexity of the progressive method is 

O(hbL). This means that the complexity of the proposed method 

does not essentially depend on N and this is a great advantage, 

especially for large values of N. As mentioned earlier, the local 

search algorithm has a complexity of O(NL) [1] which is linearly 

dependent to N. 

 

4. SIMULATION RESULTS 
 

In this section, we compare the performance of our progressive 

algorithm with the local search algorithm in [1], which is approved 

as an efficient and fast algorithm to solve the ULP packetization 

problem. In [1], some of the other well-known approaches have 

been compared with the local search algorithm in the sense of 

simplicity and efficiency and the local search algorithm has been 

recognized as the best one. Hence, we compare our method only 

with the local search algorithm. Although the proposed and local 

search methods are both applicable on image and video sources, 

we compare them for image coding application. To generate an 

embedded bit stream from a test image, we have used JPEG2000 

scalable coding. Obviously, the comparison can be easily extended 

to scalable video codecs, e.g. 3D set partitioning in hierarchical 

tree (3D SPIHT), with a known distortion-rate characteristic. 

In our simulation, the packet loss PDF is considered as a 

binomial distribution with parameters p and N. It means each of N 

packets may be independently lost with the probability of p. 

Because ATM packets have a payload length of 48 bytes and one 

byte is required for sequence number, we have chosen L = 47 bytes 

to mimic a practical application. JPEG2000 scalable bit streams of 

8 bits per pixel (bpp) gray scale 512×512 Lena, Barbara, and Boat 

test images are generated with the Jasper 1.701.0 transcoder [5]. 

The fidelity of the reconstructed image is measured in peak signal-

to-noise ratio (PSNR). The PSNR-rate curves of JPEG2000 coded 

Lena and Barbara images are shown in Fig. 3. 
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Fig. 3. The PSNR-rate curves of JPEG2000-coded 8-bpp gray 

scale 512×512 Lena, Boat, and Barbara images. 
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The rate after compression and MD-FEC is 8NL / (512×512) in 

bpp. Therefore, N value can be used as a rate control parameter. In 

Fig. 4, PSNR performance of the proposed progressive method is 

compared with the local search algorithm for some values of N. 

The packet loss probability, p, is assumed 0.1 and 0.2 for Fig. 4a 

and Fig. 4b, respectively. It is seen that the both ULP segmentation 

methods have closely the same performances. 
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(b) 

Fig. 4. The comparison of the proposed method (solid lines 

without any marker) with the local search algorithm [1] (circles), 

(a) PSNR vs. N for p = 0.1, (b) PSNR vs. N for p = 0.2. 

 

5. CONCLUSIONS 
 

In this paper, we have developed a low complexity progressive 

method to determine the suboptimal size of each data segment in 

an embedded code stream for the purpose of unequal loss 

protected-packetization. The proposed method is based on an 

analytically-derived relation between the sizes of any two 

successive segments. To keep the number of required progressive 

procedures low, a short search interval including the optimal size 

of the first segment has been derived analytically. 

The search space of the segmentation problem for unequal loss 

protected-packetization is a large and "dark" space and none of the 

earlier researches have focused on the behavior of the expected 

distortion in such a dark space. The proposed method is based on a 

smart analysis of the expected distortion in the search space. The 

simulation results show that the performance of the proposed 

method is similar to performance of the local search algorithm. 

Although the proposed method does not outperform the well-

known efficient algorithm of local search developed in [1], but 

there is a kind of novelty in developing a new concept; "In the 

optimal point of the expected distortion, there is a unique relation 

between the sizes of any two consecutive segments." This 

noticeable concept leads to this fact that if we have the optimal 

size of the first segment, then we can find the sizes of the rest of 

the segments by means of a simple progressive procedure. This 

means it is not needed to find the whole segments sizes jointly, but 

we can apply a kind of separation between them. This fact is a 

"brightening torch" to confidently step towards the optimal point 

of the expected distortion curve in a completely dark and huge 

search space. Hence, this analysis style may be used as a basis for 

further developments and improvements in the future. 

The complexity of the proposed method is nearly independent 

of the number of packets and this is a great advantage, especially 

when a large number of packets should be transmitted. The 

complexity of the local search algorithm is linearly dependent to 

the number of packets. 
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