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ABSTRACT

In real-world surveillance systems, where variation of light

and camera parameters can sometimes severely impair the

normal operation of background subtraction algorithms, bet-

ter results are obtained with differencing schemes. We have

earlier demonstrated that differencing of detail images pro-

duced by wavelet transformation can lead to more stable de-

tection results. In this paper, we considerably extend that

framework, by introducing the modified z-scores calculated

from wavelet coefficient differences. Foreground pixels are

detected as outliers in normal distribution by modified z-score

test. The threshold value used in the outlier test is optimized

by maximizing the precision and recall measures on several

training frames. Finally, the elimination of ghosts from mo-

tion detection is done by double modified z-score testing, that

is similar in idea to double frame differencing. The result-

ing motion detection method shows considerable resilience to

changes in illumination and camera parameters and also pro-

duces a lower amount of detection errors than other motion

detection methods.

Index Terms— Motion detection, Frame differencing,

Wavelet transformation, Video surveillance

1. INTRODUCTION

Many important video analysis applications, such as visual

motion tracking, human action or activity recognition and

motion trajectory analysis, rely on the detection of moving

objects as their initial step. Previous attempts to discover

moving foreground objects in the scene were primarily tar-

geted at building a comprehensive statistical model for the

image background and its effective use through a set of tech-

niques known as background subtraction. A good review of

these techniques is provided by Piccardi [1].

Wren et al. [2] proposed to use a single Gaussian dis-

tribution for each pixel in the scene. After the initialization

phase, during which the Gaussian models were built, Gaus-

sian distributions are recursively updated using a simple adap-

tive filter. However, a single-mode distribution is incapable of

modeling repetitive background motion (e.g. swaying trees).

In their prominent paper, Stauffer and Grimson [3] modeled
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each pixel as a mixture of Gaussians (MoG) and used an on-

line approximation to the expectation-maximization (EM) al-

gorithm to update the model. The Gaussian distributions are

then assessed to determine those which most likely belong to

a background. However, backgrounds having fast variations

are not accurately modeled with just a few Gaussians of a typ-

ical MoG model. Li et al. [4] proposed a Bayesian framework

with principal features (BFPF) under which the background

is represented by the most significant and frequent features at

each pixel location. Their model incorporates spectral, spatial

and temporal features. Static pixels are described with spec-

tral and spatial features of the image, while dynamic pixels

are described with temporal features. The potential problem

with this method is that it can wrongly learn the features of

foreground objects as the background if too many foreground

objects are present in the scene. The codebook (CB) model

for foreground-background segmentation, introduced by Kim

et al. [5], samples pixel values at each location over long pe-

riod of time without making any parametric assumption. The

CB model can handle scenes containing moving backgrounds

or illumination variations to some extent.

Background modeling is closely related to the problem of

change detection. The goal of change detection is to identify

the set of pixels with a significant difference between the last

and previous images of a video sequence. Frame differencing,

as a basic method for change detection, performs threshold-

ing of the image differences between two consecutive video

frames. If a sudden change in illumination or camera internal

parameter occurs, frame differencing will produce a smaller

amount of false positives than background subtraction meth-

ods. However, frame differencing is susceptible to aperture
problem and ghosting [6]. The first problem refers to the low

textured parts of moving objects, that are erroneously labeled

as background. The second problem corresponds to false de-

tections that occur when moving objects uncover some part of

the background. In order to eliminate ghosts from the change

detection results, Kameda and Minoh [7] proposed to use dou-

ble frame difference (DFD). This method thresholds the dif-

ferences between frames t + 1 and t, and between frames t
and t − 1, and then combines the results using logical AND

operation.

To get more consistent change detection masks than those

obtained by simple and double frame differencing, we have

previously proposed [8] to use differences of detail images
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that were generated by an undecimated wavelet transforma-

tion. The elimination of ghosts that appear in thresholded dif-

ference images is achieved by performing a significance test

on undecimated wavelet transformation coefficients. Only

image locations with large wavelet coefficients that change a

lot between two consecutive frames are labeled as foreground.

In this paper, we considerably extend the wavelet dif-

ferencing framework introduced in [8]. Firstly, instead of

simple wavelet differences, we calculate at each scale and

location the modified z-score [9] from wavelet differences.

The problem of finding the pixels that belong to moving

objects is recast as that of detecting outliers among the nor-

mally distributed wavelet differences. Outlier detection is

performed using modified z-score test, that compares the

modified z-scores to a fixed threshold. Secondly, the fixed

threshold value used in the statistical outlier test is estab-

lished through an optimization procedure, that effectively

minimizes the number of false positives and negatives for

several manually segmented frames. Finally, the elimination

of ghosts from motion detection masks is not accomplished

by significance testing, but through a double modified z-score

testing that is motivated by the idea of double frame differ-

encing. This leads to a simpler optimization procedure, that

needs to find only one threshold value instead of two used in

the change detection and significance tests [8]. The resulting

motion detection method shows considerable resilience to

illumination and camera internal parameter changes (e.g. a

change in automatic exposure and aperture). It also produces

a lower amount of detection errors than other differencing

and non-differencing techniques.

The rest of the paper is organized as follows. Section 2 ex-

plains in detail the proposed optimal wavelet based approach

for motion detection. Experimental results are given in Sec-

tion 3 and conclusion is given in Section 4.

2. OPTIMAL WAVELET BASED DETECTION
OF MOTION

Multi-scale image representation plays a key role for under-

standing the saliency of visual information as perceived by

humans and can be successfully used for object recognition.

Recent visual neuroscience experiments suggest that robust

object detection can be realized by sampling images at mul-

tiple scales so as to have access to context, shape and texture

[10].

As in the human visual system, more robust motion

detection and tracking can be achieved by using only the

spatial gradient information derived from multi-resolution

image representation. Our experiments show that undesirable

changes of illumination or camera internal parameters have

more influence on the low-pass information in images, than

on the high-pass information. Therefore, low-pass image

components are not used for the motion detection in this pa-

per, but only the detail images generated by an undecimated

wavelet transformation. The reason for choosing the undec-

imated wavelet transformation is that its detail images are

already aligned because no decimation is performed. De-

tailed discussion of filter banks used for undecimated wavelet

transformation is provided in [11].

At the beginning, the undecimated wavelet transformation

of each frame of video sequence is calculated. Since scal-

ing coefficients are not of interest in this paper, the wavelet

transformation will provide only the set of wavelet coeffi-

cients wd
j (x, y, t), where j = 1, ..., J denotes a resolution

level (scale), d = LH,HL,HH denotes a subband orienta-

tion, and x,y and t denote spatial coordinates and frame num-

ber. The temporal change of wavelet coefficients is given as

Δd
j (x, y, t) = wd

j (x, y, t + 1) − wd
j (x, y, t). (1)

If there is no motion in the image, the obtained wavelet

differences at each resolution level and orientation are nor-

mally distributed with a zero mean and a small standard devi-

ation. However, moving objects in the scene will cause some

wavelet coefficients to change drastically, and the respective

wavelet differences will become outliers to the normal distri-

bution. Hence, the problem of finding pixels that correspond

to motion is akin to the problem of detecting outliers in the

set of wavelet differences.

Modified z-score test [9] is used to detect the outliers

to the normal distributions by comparing modified z-score

Zd
j (x, y, t) with a fixed threshold τ . The modified z-score

is calculated by normalizing the wavelet coefficient dif-

ference with outlier resistent estimator of standard devia-

tion. The median of absolute deviation about the median

(MAD) is such an estimator [12], and here is calculated as

MAD(Δd
j (x, y, t)) = medianx,y{|Δd

j (x, y, t)|}. Modified

z-score is computed as

Zd
j (x, y, t) = 0.6745 · Δd

j (x, y, t)
MAD(Δd

j (x, y, t))
. (2)

Under the assumption that moving objects represent a

smaller part of the frame, modified z-score test yields an out-

lier detection mask that identifies the pixels that correspond

to visually distinctive parts of moving objects

O(x, y, t) =
{

1 if |Zd
j (x, y, t)| > τ for some j,d

0 otherwise
(3)

The elimination of ghosts from outlier detection mask is

achieved by performing modified z-score test twice, and to

mark as foreground only those locations that are both times

characterized as outliers

FG(x, y, t) =
{

1 if O(x, y, t) = 1 and O(x, y, t − 1) = 1
0 otherwise

(4)
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Fig. 1. Motion detection results for a frame of the Bridge
video sequence. In order to regulate the amount of light after a

large vehicle had entered the scene, the camera automatically

increased the aperture size. The correction of aperture size

caused a change of the values of many pixels in the image.

(a) The original video frame. (b) Mixture of Gaussians model

[3]. (c) Codebook model [5]. (d) Bayesian framework with

principal features [4]. (e) Double frame differencing [7]. (f)

Proposed algorithm.

The performance of the proposed wavelet based motion

detection depends on the choice of fixed threshold value τ ,

used in the outlier detection test. As τ increases, the number

of false positives (FP) falls, but the number of false negatives

(FN) rises. If τ decreases, the opposite happens - FP rises, but

FN falls. To find a value of threshold τ that minimizes both

types of error, we performed the following optimization step

on several ground truthed frames

τopt = arg max
τ

{wp · TP

TP + FP
+ wr · TP

TP + FN
}. (5)

The first term is called Precision and it effectively minimizes

the number of false positives. The second term is called Re-
call and it effectively minimizes the number of false nega-

tives. Weights wp and wr can be adjusted to make criterion

biased towards detecting accurate object outline (less false

positives) or filling the internal holes in the detected moving

objects (less false negatives). With wp = 2 and wr = 1, the

obtained optimal threshold value is close to 10.

3. EXPERIMENTAL RESULTS

Experimental validation of the proposed method for mo-

tion detection and the comparison with other state-of-the-art

methods is performed on two traffic video surveillance se-

quences. One sequence is recorded by a bridge traffic surveil-

lance system, and exemplifies some challenging problems in

real-world surveillance systems, such as sudden illumination

change or camera internal parameter adjustment due to au-

tomatic control. Another video is the well-known Karlsruhe

Table 1. Quantitative analysis of the motion detection re-

sults given in Fig. 1, for a frame of the Bridge video se-

quence. Numbers in the table represent the percentages of

true positives (TP), false positives (FP), false negatives (FN),

precision (P), recall (R) and F-measure. Methods of compari-

son are Mixture of Gaussians (MoG), Codebook model (CB),

Bayesian framework with principal features (BFPF), Double

frame difference (DFD) and the proposed optimal wavelet

based detection.
TP FP FN P R F

MoG [3] 3.1 69.0 1.3 4.3 70.6 8.1

CB [5] 4.3 85.5 0.1 4.8 97.0 9.1

BFPF [4] 4.2 4.6 0.2 47.9 95.6 63.8

DFD [7] 2.0 1.7 2.4 53.8 45.6 49.4

Proposed 3.4 1.5 1.0 69.9 78.0 73.7

Ettlinger-Tor sequence, that is a short recording of the urban

traffic. The proposed optimal wavelet differencing method for

robust motion detection has been set to use three resolution

levels of the undecimated Haar wavelet transformation.

Figure 1 shows a challenging situation for motion detec-

tion algorithms, when a large vehicle enters the scene and

changes the amount of light in the image. In order to coun-

teract the light change, the camera automatically adjusts the

aperture size, but it causes a change of the values of many

pixels in the image. Mixture of Gaussians (MoG) [3] and

Codebook (CB) models [5] do not adapt quickly to the sudden

change of pixel levels, and thus produce a lot of false posi-

tives. Bayesian framework with principal features (BFPF) [4]

and Double frame differencing (DFD) [7] have more stable

detection results, but they are still susceptible to shadows and

light reflections. Table 1 provides a quantitative analysis of

the motion detection results presented in Fig. 1. Percentages

of the true positives (TP), false positives (FP) and false nega-

tives (FN) are expressed relative to the total amount of pixels

in the image. Beside the Precision (P) and Recall (R) mea-

sures that have been already defined in Section 2, numerical

results are also provided for the F-measure, a metric for eval-

uating the integral performance of a detector. The F-measure

is calculated as a harmonic mean of the Precision and Recall

measures

F =
2 · Precision · Recall

Precision + Recall
. (6)

Figure 2 and Table 2 provide the qualitative and quantita-

tive analysis of motion detection results obtained for a frame

of the Karlsruhe Ettlinger-Tor video sequence. As can be

noted from Tables 1 and 2, in both experimental cases the

proposed optimal wavelet differencing method outperformed

other compared methods, yielding a higher F-measure and

better motion detection. All video materials used in the pa-

per can be found at www.ursusgroup.com.
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Fig. 2. Motion detection results for a frame of the Karlsruhe
Ettlinger-Tor video sequence. (a) The original video frame.

(b) Mixture of Gaussians model [3]. (c) Codebook model

[5]. (d) Bayesian framework with principal features [4]. (e)

Double frame differencing [7]. (f) Proposed algorithm.

Table 2. Quantitative analysis of the motion detection results

given in Fig. 2, for a frame of the Karlsruhe Ettlinger-Tor
video sequence. Please refer to Table 1 for an explanation of

used symbols.

TP FP FN P R F

MoG [3] 1.7 0.9 3.8 64.3 30.5 41.4

CB [5] 4.3 13.6 1.1 24.3 80.2 37.3

Li [4] 2.9 2.0 2.5 58.7 53.2 55.8

DD [7] 2.1 1.0 3.4 66.2 37.9 48.2

Proposed 4.1 2.3 1.3 64.3 75.8 69.6

4. CONCLUSION

This paper proposes a novel algorithm for motion detection

that is more resilient to changes in illumination and cam-

era parameters than other motion detection methods. The

wavelet differencing scheme, that operates on detail images of

a wavelet transformation, has been considerably extended in

this paper. The modified z-scores calculated from wavelet co-

efficient differences have been incorporated in order to clas-

sify pixels as foreground/background based on the modified

z-score outlier test. The threshold value used in the outlier

test is also optimized using several training frames with man-

ually segmented foreground objects. At last, ghosts in mo-

tion detection results have been eliminated by double mod-

ified z-score testing. Experimental validation shows that the

proposed method produces a lower amount of detection errors

than other detection methods.
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