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ABSTRACT

Supershape model is a recent primitive that represents numer-
ous 3D shapes with several symmetry axes. The main inter-
est of this model is its capability to reconstruct more com-
plex shape than superquadric model with only one implicit
equation. In this paper we propose a genetic algorithms to re-
construct a point cloud using those primitives. We used the
pseudo-Euclidean distance to introduce a threshold to handle
real data imperfection and speed up the process. Simulations
using our proposed fitness functions and a fitness function
based on inside-outside function show that our fitness func-
tion based on the pseudo-Euclidean distance performs better.

Index Terms— 3D Reconstruction, genetic algorithms, su-
pershapes, pseudo-Euclidean distance

1. INTRODUCTION

3D point cloud reconstruction with methods based on para-
metric surface fitting is an important field of investigation
in image processing. Among those methods, superquadric
model [1] have been very well studied [2-15], when meth-
ods based on the recent supershape model [16] have been
barely investigating [17, 18]. Although an analogy between
superquadric and supershape models can be made, and that
optimization methods to recover the parameters of the best
superquadric fitting are usually based on the Levenberg-
Marquardt (LM) theory [19], LM cannot be applied to retrieve
all the parameters for supershape fitting. Indeed, the symme-
try parameters of the supershape model have to be integers in
order to obtain a meaningful inside-outside functions (closed
primitives), leading to consider discontinuous functions that
cannot be used by the LM approach. In this paper, we propose
a method based on Genetic Algorithm (GAs) [20] in order 1)
to overcome the problem of discontinuity; and 2) to avoid ini-
tialization problems that may occur when using deterministic
approaches.

GAs have been already studied for supershapes [18].
However, we found their fitness function based on inside-
outside function not suitable to real data where accuracy has
to be sacrificed in favor of a tolerance threshold that will
handle the presence of noise. Therefore, we use the pseudo-
Euclidean distance to evaluate the solution and to integrate
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Fig. 1. Shapes examples.

Table 1. Supershapes parameters
Figure m n1, n2, n3 M N1, N2, N3 sx, sy, sz

1(a) 4 2, 2, 2 4 2, 2, 2 5, 5, 5
1(b) 4 2, 2, 2 4 100, 100, 100 5, 5, 5
1(c) 4 100, 100, 100 4 100, 100, 100 5, 5, 5
1(d) 6 100, 45, 45 4 100, 100, 100 5, 5, 2.5

this threshold. We have also noticed that for synthetic data,
the computation time of GAs can be improved using an initial
population that contains some particular individuals, known
primitives with specific scale, position, and orientation. How-
ever, when real data has to be reconstructed this initialization
is not competitive anymore. Therefore, we introduce a con-
straint that penalizes some individuals during the process
to invalidate inappropriate solutions either with synthetic or
real data.

In the following, firstly, we present the supershape model
that we use as primitive to reconstruct the point cloud. Sec-
ondly, we propose our method combining GAs, a fitness func-
tion based on the pseudo-Euclidean distance, and integrating
a threshold to address noise issue and speeds up the overall
process. Thirdly, we give preliminary results of our method
and compare its performance to GAs methods using the fit-
ness based on inside-outside function. Finally, we conclude
on the performance of our method and give idea on future
work.

2. SUPERSHAPES

Among the different object representations we have chosen to
explore the supershape model that have been introduced six
years ago by Gielis [16] as an extension of superquadrics. The
main advantage of this model resides in its two symmetry pa-
rameters m and M, allowing to generate more complex shapes
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than superquadric model. Therefore, it is possible to recon-
struct the same objects as superquadric model as well as ob-
jects with more than four symmetry axes, see Fig. 1 and Tab. 1.
Supershapes are the result of the spherical product between
two generalized superellipses, as described by equations 1, 2,
and 3:
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where −π ≤ η < π and −π
2 ≤ ω < π

2 , a, b, ni, and Ni
∈ R+ and m, and M ∈ R+∗ . Notice that in our study we have
considered the unitary supershapes, i.e. a = b = 1.

In addition, supershapes can be also represented by an
inside-outside function as mention in [17]:

F (x, y, z) =
x2 + y2 + z2

r2
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where O is the center of the supershape, P (x, y, z) is the point
in 3D space, and I (xI , yI , zI) is its corresponding point on the
surface. Notice that I is the intersection point between the ray
OP and the supershape and it is computed using Eq. 1 and the
following:
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Because the primitives are defined at the origin of the world
frame, we have also to consider the transformations that mod-
ify the unitary superquadric. First the scaling S(sx, sy, sz), then
the rotations of the axes R(θ, φ, ψ), and finally the translation
T(dx, dy, dz) are applied for the placement of the parametric
surface in the world frame coordinate. This implies that 17
parameters (m, n1, n2, n3, M, N1, N2, N3, sx, sy, sz, θ, φ, ψ, dx,
dy, dz) have to be retrieved for reconstruction based on super-
shape fitting.

3. FITTING ERROR ANALYSIS

In the superquadric literature, several studies such as [13,
14, 15] compare different fitting errors. When the conclusion
in [13] is in favor of an error based on pseudo-Euclidean dis-
tance, the two others conclude that the inside-outside function
may perform better depending on the type of application and
data. That may explain the preference of numerous authors
such as [2-9] for fitting errors based on the inside-outside
function. We have also noticed that [17, 18] use the inside-
outside function for their reconstruction methods based on
supershape fitting. However, because real data is noisy and
often contains errors from image processing (registration and
integration), we have decided to base our fitting error on the

pseudo-Euclidean distance, D (Pi,S) = ‖IiPi‖, which is the
distance between Pi in the point cloud and its corresponding
point Ii on the surface S . This allows us to integrate a toler-
ance threshold τ in order to compensate for noise and errors
and to make our method more robust. Therefore we consider
the following equation:

Eo f τ
1 (S) =

1
N

N
∑
i=1

Dτ (Pi,S) (7)

Dτ (Pi,S) =

{
D (Pi,S) = ‖IiPi‖ if D (Pi,S) > τ

0 otherwise
(8)

This basically means that, for every point within the thresh-
old, the parametric surface is considered as a perfect fit and
the value of ‖IiPi‖ is set to 0, i.e., a fitting error equal to 0 cor-
responds to the perfect fit with respect to the threshold τ.

Considering the LM method initialization, we have no-
ticed that most of the time the initial shape is a sphere placed
inside the point cloud. We formulate this property with a con-
straint on the scalar product between each normal at the point
P and its corresponding point I on the surface to penalize the
supershapes that have not their center inside the point cloud.
Therefore we use the following fitting error:

Eo f1 =

{
nrev if ∃ i such as 〈nIi · nPi 〉 < 0
Eo f τ

1 (S) otherwise
(9)

where nrev is the number of points that penalize the super-
shape S , the points Pi and Ii have been already described, and
have the respective normal nPi and nIi (nxIi , nyIi , nzIi ), this lat-
ter is computed from:

nxIi =r2 (ω) cos ω
[
r′1 (η) cos η − r1 (η) sin η

]
+

r1 (η) cos η
[
r′2 (ω) cos ω − r2 (ω) sin ω

] (10)

nyIi =r2 (ω) cos ω
[
r′1 (η) sin θ + r1 (η) cos η

]
+

r1 (η) sin η
[
r′2 (ω) cos ω − r2 (ω) sin ω

] (11)

nzIi =r′2 (ω) sin ω + r2 (ω) cos ω (12)

with η and ω from Equations 5 and 6.
Therefore the reconstruction problem is defined as the fol-

lowing minimization problem:

min
(
Eo f1

(S : m, n1..3, M, N1..3, sx, sy, sz, θ, φ, ψ, dx, dy, dz
))
(13)

4. GENETIC ALGORITHMS STRATEGIES

To solve the optimization problem that we just describe, we
implement a GAs method that follows the classic scheme,
Fig. 2. We encode the solution with a real value, limit and
sample each domain to obtain a meaningful values of the pa-
rameters. Each generation is composed of a population that
contains 5000 individuals. The selection method randomly
chooses both parents. The crossover mixes them following
the uniform exchange of each gene. The mutation is applied
to a quarter of the population and randomly replaces one or
two genes of the chromosome. This subsequently keeps the
diversity of the genetic material. The genes values are ran-
domly replaced with values in the corresponding parameter
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Fig. 2. The GAs strategies: the random selection, the crossover
using uniform exchange, the mutation, and the elitism.

domains. Elitism keeps a small percentage of the best individ-
uals from one generation to the next. We have implemented
three different stopping criteria. The first one is a threshold
under which the fitness value is considered acceptable. In-
deed, it is almost impossible to have the fitness equal to 0
due to computation approximation and/or noise. The second
stopping criterion is the fact that all elites are identical. This
phenomenon means that the algorithm reaches a family of
solutions, either local or global, and that the genetic material
does not allow for the exploration of more solutions. The last
stopping criterion is the maximum number of generations
allowed. Finally to evaluate the individuals we use the fitting
error described Eq. 15 as fitness function.

5. RESULTS

We have compared our GAs method using the fitness function
Eo f1 to the same GAs method using the fitness function Eo f2
based on the inside-outside function from [18]:

Eo f2 = sxsysz

N
∑
i=1

(F (Pi) − 1)2 (14)

where F (Pi) is given Eq. 4, sx, sy, and sz are the scale factor
with respect to the three axes x-, y- and z-. We observe that
GAs with Eo f2 as it is described in [18] is sensitive to misclas-
sification of the best individuals if we have to consider scales
below one unit.

We also test the inside-outside function with a threshold
and similar constraint than Eo f1:

Eo f3 =
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Eo f τ

3 (S) otherwise
(15)
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Fτ (Pi,S) =

{
F (Pi,S) = |F (Pi) − 1| if F (Pi,S) > τ

0 otherwise
(17)

As we expected, we could observe that the parametric surface
becomes increasingly further away from the ideal solution as
the threshold increases, Figures 3(d), 3(e), and 3(f). In addi-
tion we noticed interesting behavior, as the threshold becomes
equal or superior to 1. These thresholds lead to an immediate
solution with a fitness value equal to 0, which represents any
parametric surface that contains the point cloud. This behav-
ior can be explained by the distribution of the inside-outside
function that have a maximum equals to 1 at the center of the
supershape. Therefore, Eo f1 seems to be the most adapted to
use GAs optimization method. The function analysis does not
show any problem for us to use it as fitness function.

6. CONCLUSION

We describe a GAs method for 3D reconstruction using a fit-
ness function based on the pseudo-Euclidean distance that in-
tegrate a tolerance threshold to handle noisy data. We have
added a constraint on the parametric surface center to penal-
ize some solutions in accordance of deterministic method ini-
tialization. The proposed fitness function with the constraints
met our expectations and experimentations on several data
have shown that it performs better than the GAs method us-
ing the inside-outside function and that it is not sensitive to
initialization such as LM method. This method can be also
generalized to other primitive models such as superquadrics.
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