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ABSTRACT

This paper introduces an image transformmethod by usingM -channel
biorthogonal filter banks (BOFBs) with an efficient lifting factoriza-
tion. The proposed lifting factorization of a building block in their
lattice structure has unity diagonal scaling coefficients and guaran-
tees perfect reconstruction even if the obtained coefficients are quan-
tized. Since the number of rounding operators of proposed lifting-
based BOFBs (LBBOFBs) can be reduced by merging the lifting
steps, the proposed structure is efficient for lossless image coding.
Image coding results indicate better performance than conventional
methods.

Index Terms— Biorthogonal filter banks, lifting structure, re-
ducing rounding operator, lossless-to-lossy image coding.

1. INTRODUCTION

Recently, many researchers have been studying in the field of multi-
rate signal processing. Filter bank (FB) is one of the most efficient
concepts to compress multimedia signals [1]. FBs are adopted to
image, audio and video coding standards such as JPEG and MPEG
[2]. Fig. 1 (a) shows a uniform maximally decimated M -channel
filter bank which consists of parallel analysis filters Hi(z), synthe-
sis filters Fi(z), decimaters and interpolators. Fig. 1 (b) illustrates
its equivalent polyphase representation where E(z) and R(z) are
the type-I and -II polyphase matrices, respectively. The polyphase
representation is formulated as follows [1]:

ˆ
H0(z) H1(z) . . . HM−1(z)

˜T
=E(zM )e(z)T

ˆ
F0(z) F1(z) . . . FM−1(z)

˜
=e(z)R(zM ) (1)

where e(z) =
ˆ
1 z−1 . . . z−(M−1)

˜
and ·T denotes trans-

position of a matrix. If perfect reconstruction (PR) is achieved, the
synthesis polyphase matrix R(z) can be chosen as the inverse of
E(z). The obtained FB is called a BOFB. If E†(z−1)E(z) = I and
R(z) = E†(z−1), the FB belongs to a special class of PRFBs called
a paraunitary (PU) FB, where ·† stands for conjugate transpose. It
is commonly known that PUFBs can be designed easily due to the
property. Although the number of design parameters is smaller than
that of BOFBs, the frequency responses of PUFBs are usually worse
than those of BOFBs. Hence, we focus on BOFBs.

PRFBs are designed efficiently by the lattice structure [3]. To
apply FBs to lossless image coding, the lattice structure should be
represented by lifting structures which has unity diagonal scaling co-
efficients to avoid quantization errors. In [4], the authors introduced
the lifting structure of order-1 PUFBs based on a Householder matrix
for both lossy and lossless image coding. The lifting structures for
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Fig. 1. (a) An M-channel filter bank. (b) A polyphase structure of a
filter bank.

BOFBs have researched in [5] and [6]. However, the conventional
factorization of BOFBs involves non-unity diagonal scaling coeffi-
cients. Hence, they have not been applied to lossless coding directly.
Furthermore degree-1 BOFBs which have unity diagonal scaling co-
efficients throughout the lifting structure have been proposed in [7].

In this paper, we propose a novel lifting structure of order-1
building blocks in BOFBs. The proposed lifting structure has more
design parameters than those of the conventional order-1 PUFBs
and degree-1 BOFBs. Additionally by merging the lifting steps,
the structure can be reduced the number of rounding operators effi-
ciently which is useful for lossless image coding. Proposed FBs can
also be applied to lossy image coding by interrupting the obtained
bit stream.

This paper is organized as follows; first, we review the lattice
structure of BOFBs in section 2. In section 3, we introduce the lifting
factorization for BOFBs with unity diagonal scaling coefficients and
the structure of merged lifting steps. Design examples and lossless-
to-lossy image coding application are compared with 5/3-tap and
9/7-tap DWT [1] and the same order of the conventional PUFB [4]
in section 4. Section 5 concludes the paper.

2. LATTICE STRUCTURE OF BOFBS

2.1. Order-1 Building Block of BOFBs

A class of causal M -channel L-th order FIR BOFBs are factorized
into [6]

E(z) = WL(z) · · ·W1(z)E0 (2)

where E0 is anM × M nonsingular matrix which is called the first
block. Wm(z)(m = 1 . . . L) is anM × M first-order BO building
block given by

Wm(z) = I − UmV†
m + z−1UmV†

m (3)
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Fig. 3. Two lifting steps with lifting multipliers V and U and its
inverse

where theM × γm parameter matricesUm andVm satisfy

V†
mUm =

2
6664

1 × · · · ×
0 1 · · · ×
...

...
. . .

...
0 0 · · · 1

3
7775

γm×γm

for some integer 1 ≤ γm ≤ M , where× indicates possibly nonzero
elements. This is a generalization of the paraunitary factorization
given in [8] whereUm = Vm, and has been used for a factorization
of the biorthogonal lapped transform (BOLT) [9]. The properties of
the matrix are described as follows:

• Since the rank of V†
mUm is γm, the McMillan degree of

Wm(z) as in (3) is γm. When γm = 1 andM/2, the struc-
ture is called degree-1 and order-1 building block, respec-
tively. In this paper, we focus on the order-1 structure, since
more design parameters can be used than the degree-1 struc-
ture.

• The structure in (2) completely spans all causal FIR PRFBs
having anticausal FIR inverses. The spanned analysis filters
have filter lengths no greater thanM(L+1), and the McMil-
lan degree of E(z) ranges from L to ML, where L is the
order of the FB.

• The Type-II synthesis polyphase matrixR(z) is given by

R(z) = E−1
0 W−1

1 (z) . . .W−1
L (z). (4)

Due to the possibly nonzero off-diagonal elements ofV†
mUm,

the order of W−1
m (z−1) can be greater than one. Thus the

synthesis bank could have different filter lengths fromM(L+
1).
In this paper, we set V†

mUm = Iγ . Hence, W−1
m (z−1) =

I − UmVm + zUmVm, which is anticausal and satisfies
R(z)E(z) = I for PR.

2.2. Generalized Householder Matrix H

LetH be anM × M generalized Householder matrix [3]. H can be
written as follows:

H = IM − 2UV†, (5)
where V†U = Iγ , the size of matrices U and V is M × γ. When
γ = M/2, it can be regarded as the order-1 building block at z =
−1. In this paper, we adopt this matrix as the first block of the lattice
structure.

3. AN EFFICIENT LIFTING STRUCTURE OF BOFBS

In this section, we introduce a new lifting factorization of the order-1
building block and the generalized Householder matrix. To apply the
FBs to lossless image coding, the building block Wm(z) and first

block E0 should be factorized into the lifting steps, and should not
have non-unity diagonal scaling coefficients. Fig. 3 shows a series
of two lifting steps and their easy-to-compute inverses.

3.1. Lifting Structure of Order-1 Building Blocks of BOFBs

We assumeUm andVm in (3) as

Um =

»
A
B

–
and Vm =

»
C
D

–
,

whereC†A + D†B = I. Substituting them into (3), we obtain

W(z) =

»
I 0
0 I

–
−

»
AC† AD†

BC† BD†

–
+ z−1

»
AC† AD†

BC† BD†

–
.

Then, two block lifting matrices are multiplied from the both side of
W(z). If the product can be represented as a block lifting matrix,
W(z) can be factorized into the product of some block lifting ma-
trices. First, let P be an arbitrary M/2 × M/2 matrix. The block
lifting matrix is multiplied from the right side ofW(z) as follows:

S(z) ≡ W(z)

»
I 0
P I

–
.

To keep the property of unity diagonal scaling coefficients, upper left
components of S(z) has to be an identity matrix as

I − AC† + z−1AC† − AD†P + z−1AD†P = I.

The condition of P is defined by

P = −D−†C†. (6)

Consequently, S(z) can be rewritten as

S(z) =

»
I −AD† + z−1AD†

P I − BD† + z−1BD†

–
.

Next, other block lifting matrixT(z) is multiplied from the left side
of S(z) such as

T(z) ≡
»
I 0
Q I

–
S(z)

=

»
I −AD† + z−1AD†

Q + P I + (z−1 − 1)(QAD† + BD†)

–

The lower left component of T(z) should be a null matrix. Hence,
the condition

Q = −P (7)

is obtained. Under the condition, (6), (7) andC†A + D†B = I, the
lower right component can be rewritten as follows:

I + (z−1 − 1)(QAD† + BD†)

= I + (z−1 − 1)(D−†C†AD† + D−†(I − C†A)D†)

= z−1I.

Consequently, T(z) is formulated as
»

I 0
−P I

–
W(z)

»
I 0
P I

–
=

»
I −AD† + z−1AD†

0 z−1I

–
.
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Fig. 2. (a) The proposed lifting structure, (b) Reducing of rounding operators

Therefore, an order-1 building blockW(z) = I−UV†+z−1UV†

can be factorized into

W(z) =

»
I 0
P I

– »
I −AD† + z−1AD†

z−1I

– »
I 0

−P I

–

=

»
I 0

−D−†C† I

– »
I AD†

0 I

– »
I 0
0 z−1I

–
»
I −AD†

0 I

– »
I 0

D−†C† I

–
. (8)

3.2. Lifting Structure of The First Block Based on Generalized
Householder Matrix

Let E0 be an M × M generalized householder matrix. E0 can be
written as follows:

E0 = IM − 2UV†, (9)

where V†U = Iγ , the size of U and V is M × M/2 which is
the same as the above subsection. Thus, a generalized Householder
matrix is decomposed into the product of block lifting matrices as

E0 =

»
I 0

−D−†C† I

– »
I −2AD†

0 −I

– »
I 0

D−†C† I

–
,

where A, C and D are arbitraryM/2 × M/2 nonsingular matrices.
The derivation of E0 is almost similar to the previous section except
substituting z = −1 into (8), thus we omit it. Fig. 2 (a) shows the
example of the proposed lifting structure of four-channel LBBOFB.

3.3. Merging Rounding Operators

The number of rounding operators should be as small as possible for
lossless image coding because these operators cause a reduction of
coding efficiency. We can reduce it by merging lifting steps. Since
our FB is applied to lossless image coding, we can merge the lifting
steps at both side of z−1. Fig. 2 (b) shows the proposed lifting
structure with reduced rounding operators. Black and white circles
denote adder and rounding operators, respectively.

4. RESULTS

In this section, we present the design examples of proposed LB-
BOFBs. The cost function to design the FBs is a weighted linear
combination of the coding gain CCG, the stopband attenuation of
analysis and synthesis filter bank ESTOP and RSTOP , and the DC
leakage CDC [3].

Φ =

i=1X
M−1

(ω1ESTOP + ω2RSTOP + ω3CDC) − ω4CCG (10)

where ω1, ω2, ω3, and ω4 are weighted coefficients.

4.1. Application to Lossless Image Coding

Our LBBOFBs are applied to lossless image coding by using a round-
ing operator in each merged lifting step. We adopted the periodic
extension at the image boundaries and EZW-IP as a wavelet based
coder [10]. The coding results are compared by entropy [bpp]=(Total
number of bits [bit])/(Total number of pixels [pixel]) which indi-
cate how the FBs efficiently reduce the spatial redundancy of the
input signals. Table 1 shows the comparison between LBBOFBs
and LBPUFBs and 5/3-tap WT [11]. The comparison of the number
of rounding operators and lossless coding results is shown in Table
3. The proposed FBs present better performance than those of the
conventional FBs.

4.2. Lossless-to-Lossy Coding

Proposed LBBOFBs can be also applied to lossy image coding by in-
terrupting the obtained bit stream. As well as lossless image coding,
we adopted the periodic extension and EZW-IP. The coding results
are compared by PSNR = 10 log10(2552/MSE)[dB] where MSE
is the mean squared error. Table 2 and Fig. 5 show the comparison
of PSNRs between 8 × 24 LBBOFBs and 9/7-tap WT and the part
of the enlarged images of Barbara. It is obvious that our LBBOFBs
indicate better results on both PSNR and perceptual visual quality of
reconstructed images against 9/7-tap WT.
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Table 1. Comparison of lossless image coding (Entropy [bpp]).
Image 5/3-tap Conv. LBPUFB [4] Prop. LBBOFB

(512×512) WT [11] 8 × 16 8 × 24 8 × 16 8 × 24
Barbara 4.87 4.88 4.82 4.85 4.76
Elaine 5.11 5.12 5.06 5.13 5.05
Finger 5.84 5.70 5.68 5.72 5.66
Finger2 5.60 5.48 5.43 5.49 5.39

Table 2. Comparison of lossy image coding (PSNR [dB])
Barbara(512 × 512)
Bit rate 9/7-tap WT Conv. (8 × 24)
0.1 24.04 24.97
0.25 27.23 28.38
0.5 30.47 32.03
1 34.91 36.21

Table 3. Comparison of the total number of rounding operators in LBBOFBs.
8 × 16LBBOFB 8 × 24LBBOFB

# of Rounding Entropy [bpp] # of Rounding Entropy [bpp]
before 28 4.877 44 4.785
reduced 10 4.854 14 4.764

(a) (b)

(c) (d)

Fig. 4. Frequency responses of LBBOFBs: (a), (b) 8 × 16 analysis
and synthesis filter banks, (c), (d) 8×24 analysis and synthesis filter
banks.

5. CONCLUSION

In this paper, we proposed a novel lifting structure of BOFBs based
on the generalized Householder matrix. This class of FBs, called
LBBOFBs, has unity diagonal scaling coefficients and guarantees
PR even if the lifting coefficients are quantized at each lifting step.
Due to this property, our LBBOFBs are suitable for lossless-to-lossy
image coding. Furthermore, LBBOFBs presents superior coding re-
sults on entropy to 5/3-tap WT, 9/7-tap WT and the conventional
LBPUFB.
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