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ABSTRACT

An image hash should be (1) robust to allowable operations

and (2) sensitive to illegal manipulations and distinct queries.

Some applications also require the hash to be able to local-

ize image tampering. This requires the hash to contain both

robust content and alignment information to meet the above

criterion. Fulfilling this is difficult because of two contradic-

tory requirements. First, the hash should be small and second,

to verify authenticity and then localize tampering, the amount

of information in the hash about the original required would

be large. Hence a tradeoff between these requirements needs

to be found. This paper presents an image hashing method

that addresses this concern, to not only detect but also local-

ize tampering using a small signature (< 1kB). Illustrative

experiments bring out the efficacy of the proposed method

compared to existing methods.

Index Terms— Locality preserving hashing, edge his-

togram, local region descriptors.

1. INTRODUCTION

An image hash is an essential component of any signature

based approach to verify the authenticity of protected query

images. It is a short signature of an image that is robust to

allowable modifications (like small rotations, compression,

scaling, addition of noise etc) and sensitive to distinct queries

and illegal tampering. Figure 1 depicts an image and its ma-

nipulated copy (query image). For verification, given the hash

of the original and the query, the hash verification algorithm

verifies the authenticity of the query. Only allowably modi-

fied images (slightly rotated, cropped, JPEG compressed etc.)

are declared authentic. Tampered or distinct images are de-

clared non-authentic. For non-authentic images, the applica-

tion may also require the method to be able to localize any

tampering in the image.

Existing image hashing methods can be categorized as

(1) exhaustive search based[1] and (2) robust representation

based approaches[2, 3, 4, 5, 6]. In an exhaustive search based

approach, the difference between the query and the original

is modeled by some fixed distortion model (e.g., affine trans-

form) and the hash consist of alignment information about

the original. For verification, the right alignment between the

original and the query is searched for by trying all possible

(a) (b)

Fig. 1. (a) Original Image (b) Illegally tampered image (also

rotated by 2o, cropped, stretched, JPEG compressed (Q=20)).

transformations, reverse applied on the query and comparing

the hash of the query with that of the original under a simi-

larity measure. If a very close alignment is indeed found, the

query is declared authentic. On the other hand, in a robust

representation based approach, robust features are extracted

from the image, from which bits are extracted to generate the

hash. During verification, the hash of the query is generated

and compared with that of the original using a similarity mea-

sure. The query is declared authentic based on their similarity.

The above approaches have their advantages and disad-

vantages. Exhaustive search based methods clearly suffer from

impractical levels of search complexity, although in theory

they can synchronize the query with the original. Lack of

content information as part of the hash also leads to high false

positive detection error[7] and does not allow localizing tam-

pering. On the other hand, in a robust representation based

method although the hash carries robust content information,

desynchronization of the query with respect to the original

and lack of alignment information as part of the hash signif-

icantly limits the verification performance. Furthermore, the

hash generation process (represented in bits) should preserve

the performance at the feature representation level[6]. This

makes it clear that both alignment and robust content infor-

mation should be carefully selected to generate an effective

hash. This is particularly true for applications that require

both detection and tamper localization in images. This im-

plies that the amount of information in the hash about the

original should be large.

Moreover, in a signature based approach, the hash is asso-

ciated with the image as header information and hence must

be small. This brings in two contradictory requirements that
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have to be met. First, the signature should be small and sec-

ond, to detect and localize tampering, the amount of informa-

tion in the hash about the original, should be as large as pos-

sible. Therefore, a tradeoff between these two contradictory

requirements needs to be found. To resolve this contradiction

forms the motivation for this work.

This paper proposes a novel signature based approach for

localizing tampering in images, wherein the signature, con-

sisting of a tuple of bit vectors, carries both content and align-

ment information and is short in size (< 1kB). The hash gen-

eration process includes a novel locality preserving hashing

scheme that reduces the hash size significantly while preserv-

ing the robustness-sensitivity performance at the feature level.

The hash allows both detecting and localizing image tamper-

ing.

2. FORMULATION

Hash Generation An image hashing method consists of two

steps: (1) hash generation and (2) verification. For hash gen-

eration, a set of features I = {F1, . . . , Fm}, is extracted from

the image and a function f : I �→ h, maps (also called bit ex-

traction process) them to a bit sequence h ∈ {0, 1}L, where

F1 ∈ Rn. {Rn} denotes a set of vectors in n dimensional

real space and {0, 1}L denotes a bit sequence of size L. If |I|
denotes the size of I and bit(x) the bit representation of any

real number x, |I| × n × bit(x) � L.

Verification During verification given a query image (hence

given Ĩ = {F̃1, . . . , F̃k}, as a set of features) and the hash h,

the detector decides whether Ĩ is authentic or not. The hash h̃
of Ĩ is computed and compared with h based on a dissimilar-

ity/similarity measure. Note that I and Ĩ are not synchronized

and their sizes need not be the same. A query is declared au-

thentic only if it is an allowably modified (rotated, cropped,

compressed, scaled etc) version of the original. Under ille-

gal manipulations like localized tampering, the verification

routine localizes the tampered region in Ĩ . The next section

describes the proposed hashing method.

3. PROPOSED METHOD

Hash Generation In the proposed method the hash gener-

ation process consists of a feature extraction step, followed

by a bit extraction process that generates a bit sequence h of

fixed size. Unlike existing methods, the bit sequence h is a

tuple (h = {h1, h2}) of bit sequences h1 and h2, which are

generated independently from two different kinds of features.

The process of generation of h1 and h2 is described as fol-

lows.

Generation of h1: The image is first down-sampled, and

a set of SIFT[8] features I = {F1, . . . , Fm} with Fi ∈ R128

are extracted from it. SIFT features are well-known to be

robust[9] to several geometric transformations. Given I and

a set of hyperplanes H = {H1, H2, . . . , Hd} (where Hj ∈
R128 and each plane passes through the centroid of I), the

bit extraction process implements a novel locality preserv-

ing hashing[10] algorithm to generate h1, which is explained

herein.

Algorithm 3.1: LOCALITY PRESERVING HASH(H, I)

P ← 2D coordinates of 3-5 stable Fi ∈ I in bits

for each Fi ∈ I, i ← 1 to m

do

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ti ← []
for each Hj ∈ H, j ← 1 to d

do

⎧
⎨

⎩

if Fi lies to the left of Hj

then ti ← ti ⊕ 0
else ti ← ti ⊕ 1

V ← {t1, t2, . . . , tm}, ti ∈ {0, 1}d

h1 ← {V, P}, |P | = �

For each hyperplane in H concatenate (⊕) a 0 or 1 to ti,
depending on whether Fi lies on its left or right side. Hence

for d random hyperplanes, Fi maps to a bit sequence ti ∈
{0, 1}d and for m features, the total bit sequence is given by

the set V = {t1, t2, . . . , tm}. Figure 2(c) illustrates the bit

extraction process for two hyperplanes. 2D coordinate infor-

mation for 3-5 feature points in bits (P ), are also included to

generate the hash h1 = {V, P} of size md+�, where |P | = �
is the size of P in bits. Note that the hash h1 contains content

information (V ) and alignment information (P ). V is used

to match correspondences and P helps in synchronizing the

query after correspondence matching.

The following intuitive reason explains the efficacy of the

locality preserving hashing algorithm. Each Fi can be af-

fected by two kinds of noise, replacement and random per-

turbation. Under allowable transformations, due to the ro-

bustness of SIFT features, with high probability the position

of Fi with respect to a hyperplane will not change. Hence

there is low probability of any bit flip in ti, thus preserving

the matching performance through bit extraction. Also as d
increases, each ti becomes more stable and distinct. But in-

creasing d, may increase the number of false positives (refer

Figure 2(a)). Hence an appropriate value of d must be chosen.

Note that for d = 60, the matching performance in the feature

level is perfectly preserved at the hash level.

Generation of h2: The hash h2 complements h1 by local-

izing any tampering to the aligned image. The image is first

downsampled and filtered using an anisotropic diffusion fil-

ter and then edge detection is performed to generate its edge

image. The orientation of the edges in the edge image are

quantized to 5 directions [0, 45, 90, 135, 180]. Next the edge

image is divided into non-overlapping blocks and the edge

histogram for each block is computed. The edge histograms

of each block are concatenated to generate h2. Each edge

histogram is represented by 15 bits. For an image which is
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Fig. 2. Locality Preserving Hash: (a) Feature and hash level match performance with increase in hash size. The straight red

line gives the match performance between I and Ĩ and the blue line gives the match performance between h and h̃. (b) Change in

correspondence difference between original and query, with change in hash size. (c) Illustration of the intermediate bit sequence

generation process. For two hyperplanes H1 and H2, the points P1 and P2 are binarized as {01} and {11} respectively.

divided into 16 blocks, this would generate a hash h2 of size

240 bits.

Verification Given a query Ĩ with hash h̃ = {{Ṽ , P̃}, h̃2},

the verification stage uses a similarity measure where a match

is declared if the distance between a pair of ti’s between V
and Ṽ is smaller than a threshold times the distance from their

second nearest neighbor. This matches pairs of corresponding

2D points in the original and query. Now P is used to align the

query with the original. Next, the hash h̃2 of the aligned query

is extracted and compared (based on a threshold T ) with h2.

Image blocks with dissimilarity value greater than T , indicate

a probable tampered block. The resolution of tamper local-

ization depends on the block size chosen. A smaller block

size will increase the hash size, while improving the tamper

localization resolution. In our implementation, the image was

first downsampled and then divided into 16 blocks.

4. EXPERIMENTS AND ANALYSIS

For our experiments a collection of 50 distinct images from

the USC-SIPI database was used. These images were mod-

ified using 9 allowable transformations to generate 450 au-

thentic queries. For checking image tampering, 10 images

were spliced, content removed, and content rearranged, to

generate perceptually indistinguishable tampered queries.

The hash h1 aligns the query with the original. To choose

the right hash size for h1, the similarity between the hash (h̃)

of the query (rotated by 20o about a point [100,100] from the

center of the image, cropped by 30% and JPEG compressed

by QF=10) and the hash h of the original is compared for

increasing values of hash size (Figure 2). The number of

feature points in the original and the query image is approx.

m = 60. From Figure 2(a) note that, as the hash size (d)

increases, the hash level match performance increases. The

straight line marks the feature level match performance and

defines a bound on the achievable hash level match perfor-

mance. Note that as hash size further increases, false pos-

itives are introduced, indicating that the hash size cannot be

arbitrarily large. Next, given the corresponding features in the

original and the query images, we tested how well is the corre-

spondence preserved through the bit extraction process. Fig-

ure 2(b) depicts the change in correspondence difference with

change in hash size. Note that for d = 60, hash level match

performance equals feature level match performance and the

correspondence mismatch is also low. Since for d = 60
feature level performance and point correspondences are pre-

served, only a few very robust feature points (m), with hash

size d = 60 are sufficient to represent the query hash. In

our implementation, for m = 10 and d = 60, h1 requires

md + � = 600 + 80 = 680 bits, where � = 80 is the 2D

coordinate information of 5 points in bits. On the other hand

h2 requires 240 bits. Hence the total size of the hash h is

L = 920 bits (< 1kB).

We compared the performance of our method (just us-

ing h1) with 5 other existing state of the art methods (based

on Fourier-Mellin invariants (FMT)[2], radial basis projec-

tions(RASH) [3], wavelets[5], SVD[4], structure matching

(Feature) [1]). 50 distinct images and 450 allowably mod-

ified queries were used to generate true and imposter dis-

tance distributions for each method. Figure 3 depicts the ROC

curves comparing each method. The proposed method clearly

achieves very high discrimination, due to the high discrimi-

nation capacity of SIFT features which is preserved through

the bit extraction process. Note that this discrimination is be-

tween distinct images and allowably modified images. For

locally tampered images, h1 alone in not sufficient; h2 com-

plements in making a conclusive decision.

Once the query is aligned with the original using h1, the

hash h2 can be used detect any form of tampering, namely,
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Fig. 3. ROC curve comparing the performance of the pro-

posed method with existing methods for images rotated (20o),

cropped (30%) and JPEG compressed (QF = 10) against 50

distinct images from the USC-SIPI database.

Tampered Region Localized Image

Fig. 4. Tamper localization of example in Figure 1.

splicing, content removal, exchange of patches within the same

image etc. The idea is that any intentional tampering leaves

behind significant addition or deletion of content information,

primarily edge boundary information. The block-wise quan-

tized edge histograms captures this information in the hash

h2. The resolution of the patch detection depends on the size

of the image blocks considered and hence affects the hash

size. Figure 4 depicts the localization of tampering for the

image in Figure 1 after aligning.

5. DISCUSSION

The proposed method can be seen as a unified method that

combines the advantages of an exhaustive search based hash-

ing and robust representation based hashing methods. The lo-

cality preserving projection of region descriptors can be seen

as a short robust representation whereas the availability of

2D point location information useful for aligning the origi-

nal with the query is a component of an exhaustive search

based hashing method. The availability of content informa-

tion as a robust bit representation helps in reducing the search

complexity and decreasing false positive error, both of which

are drawbacks of an exhaustive search based method. On the

other hand, availability of point location information as part

of the hash helps in registering the query with the original

which in turn addresses the synchronization problem. Once

aligned, the use of edge histogram information after some

preprocessing of the query allows localizing any tampering.
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