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ABSTRACT 
To enable fast reliable feature matching or tracking in 
scenes, features need to be discrete and meaningful, and 
hence corner detection is often used for this purpose.  
However, to obtain a higher level description of an image, 
such as identification of objects, additional information 
such as edges is required, and more recently detectors have 
been proposed that find both edges and corners.  We 
present a combined operator, enabling edge and corner 
detection to be achieved concurrently. We demonstrate 
that accuracy is comparable to well-known existing corner 
detectors and edge detectors, and, as standard post-
smoothing of the corner map is not required, significantly 
reduced computation time can be achieved. 
 

1. INTRODUCTION 

Many derivative-based edge detection operators have been 
purposed in the past 30 years, for example [2]. However, 
many edge detection operators are not designed to detect 
edge junctions and corners, and thus fail to provide edge 
connectivity in these areas [6]. Corners are often more 
abundant in real images than straight edges and are 
considered to be the most important features [16]; they are 
ideal features for tasks such as object tracking or fast 
interpretation of a robot’s environment [6]. Corner 
detectors are generally developed to detect only corner 
points [7, 9, 10], but some have the ability to perform both 
as a corner detector and an edge detector 
[1,3,4,5,8,11,14,15,16]. 

A number of methods extract edges first and then 
determine corners as points of maximal curvature or 
search for points where edge segments intersect [1,4,8,16]. 
Thus, these methods provide both edge images and corner 
images that may be combined or used for different 
purposes [8]. However, it has been reported that the 
accuracy of the corner detection stage relies on the 
accuracy of the earlier edge detection stage, which may 
lead to ambiguous structure of corner points [14]. 
Alternative methods can work directly on the image to 
extract edges and corners [5,6,9,11,14,15]. Harris and 
Stephens [6] expanded the Moravec operator [9] to 
develop a combined corner and edge detector; from the 
corner/edge response function it may be determined if the 
response indicates a corner, edge, or a flat region. Smith 
and Brady’s SUSAN corner detector [15] is based on 
brightness comparisons over neighbourhoods. By using 
different geometric threshold values the SUSAN detector 
can distinguish both corner and edge pixels. Shen and 

Wang [14] have expanded a local edge detector so that 
corners may also be detected. Edges are found in a local 
window, and where at least two straight edges pass 
through a local window a corner is deemed to be present. 
Etou et al [5] use a modified slit rotational edge detector to 
detect corners. Pei and Ding [11] developed a corner 
detector that can also be used to detect edges and other 
regions of interest.  

In this paper we propose an integrated edge and corner 
detector based on [13] that can extract edges and corners, 
but in which corner detection is not based directly on 
outputs from the edge detection. In Section 2 the 
framework used for the integrated detector is outlined, and 
performance evaluation and results obtained are presented 
in Section 3.  The work is summarised in Section 4, and 
details of future research are provided. 

2. PRODUCT OPERATOR DESIGN 

In this paper we create a family of feature extraction 
operators, using the finite element based framework 
presented in [13], that can be used to detect both corners 
and edges concurrently but independently. In [13], near-
circular Gaussian-based image derivative operators have 
been developed via the use of a virtual mesh and are 
proven to reduce angular error when detecting edges over 
a range of orientations.  In [13] the first directional 
derivative ubbu ∇⋅≡∂∂  is approximated by the 

functional 
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is associated with node i, where ),( jj yx  are the co-

ordinates of the nodal point j. σξi  is a Gaussian function 

defined in a neighbourhood around node i that enables 
Gaussian smoothing to be built into the neighbourhood 
operator.  We extend this formulation in order to develop a 
combined edge and corner detector, to which we refer as 
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the Linear2 Gaussian operator that also has built-in 
smoothing via the use of a Gaussian test function.  Hence, 
as a corner detector, this operator does not require the 
additional post-smoothing that is commonplace when 
using corner detectors such as the Harris operator [6]. 
Hence a significant speed-up can be achieved, as the 
application of Gaussian post-smoothing carries a heavy 
computational burden. In order to construct this new 
Linear2 Gaussian product operator, we use a first order 
directional derivative functional similar to that defined in 
equation (1), but which measures a product of the 
directional derivative rather than the derivative itself: 

( ) ( )( )
Ω

Ω∇⋅∇⋅= dUbUbUH iiii
σσ ξ21     (3) 

Hence we now use two piecewise linear basis functions, 
along with a Gaussian basis function to generate the new 

non-linear operators σ
YX IIH , σ

2X
IH , and σ

2Y
IH . In the case 

of σ
YX IIH  we choose 1

ib  and 2
ib  to be along the x- and y- 

coordinate directions, respectively; and for σ
2X

IH  and 

σ
2Y

IH  we choose 21
ii bb =  along the x- and y- coordinate 

directions, respectively. Hence we obtain directly 
measures of the products of directional derivatives, rather 
than from the product of measures of the directional 
derivatives. In-built smoothing is still performed via the 
presence of a Gaussian basis function in the operator 
definition. The corner strength response is then calculated 
as in [6], but now using the cornerness measure  

( ) ( )22

2222

σσσσσ
YXYXYX

IIIIII HHkHHHC +−−=    (4) 

and we choose the parameter 04.0=k  to be consistent 
with the analysis presented in [12]. Concurrently, the edge 
strength is calculated using the gradient magnitude that 

can be derived from the outputs of σ
2X

IH  and σ
2Y

IH .  We 

create both 33×  and 55×  Linear2 Gaussian product 
operators LLG3 and LLG5, using the near-circular virtual 
meshes designed in [13] and presented in Figure 1(a) and 
1(b) respectively. 

 
 

 

 
 

 
(a) (b) 

Figure 1. Triangular arrangement used for constructing the   
(a) 33×  operators; (b) 55× operators 

3. EVALUATION 

We present evaluation for the product operators with 
respect to their performance both as corner detectors and 
as edge detectors.  To evaluate corner detection we 
perform a comparative evaluation with the method of 
Harris [6] using the assessment methodology in [12], and 
for which we use the data set of synthetic corner images 
available at http://www.shef.ac.uk/eee/staff/pir/Datasets-
/CornerDatasets_f8_40.zip. For comparative evaluation 
each corner detector is applied to each image and the false 
positive fraction (FPF) and true positive fraction (TPF) are 
computed over a range of practically useful threshold 
values [12].  The ROC plot is generated to examine the 
relationship between FPF and TPF as the threshold is 
reduced.  In accordance with [12], we have generated 
comparative results using the Harris operator with a 
Gaussian post-smoothing kernel with 1=σ .  However, as 
illustrated in Figure 2, we also present results for Harris 
using a post- smoothing kernel with 6.0=σ , as we found 
this to provide improved results. It should also be noted 
that we have not applied non-maximal suppression to any 
of the algorithms, accepting the view of Rockett [12] that 
non-maximal suppression is merely a repair mechanism 
for removing detector deficiencies. 

Figure 2 shows ROC plots for each corner detector. The 
FPF and TPF responses for LLG3 and LLG5 are 
comparable to Harris with 1=σ , as further illustrated by 
the area under the curve (AUC), the product operators 
performing well as corner detectors given that no post-
smoothing is required.  
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Figure 2. ROC plots for Harris corner detector and Linear2 

Gaussian operators LLG3 and LLG5 
For further comparison, the visual responses from each of 
the corner detectors are illustrated in Figure 3; the well 
known block image contains 64 ground truth corners; in 
each case the threshold value T is selected as the visual 
best.  A summary of the corner points detected by each 
method as illustrated in Figure 3 is provided in Table 1 
and illustrates that the LLG5 operator detects a similar 
number of true corners to the Harris corner detection 
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methods, but with a higher number of false positives.  
However, the key aspect of the near-circular product 
operators is the absence of Gaussian post-smoothing, 
making them considerably more efficient in terms of 
reduced computational time, as can be seen from the 
processing times shown in Table 2. 

 
(a) Harris 1=σ , 499=T   

 
(b) Harris 6.0=σ , 741=T  

 
(c) LLG3, T = 382 

 
(d) LLG5, T = 336 

Figure 3.  Illustration of detected corners for various techniques 
 

Corner Detector # Detected  
corners 

# True detected 
corners 

Harris 1=σ  33 33 
Harris 6.0=σ  32 32 
LLG3 38 27 
LLG5 42 33 

Table 1: Corner point detection rates 

METHOD Time (seconds) 
Harris (  = 0.6) 27.8 
Harris (  = 1.0) 29.5 
LLG3 7.4 
LLG5 13.0 

Table 2: Processing times for corner detection using the 
complete corner image dataset in [12] 

In order to evaluate the proposed operator as an edge 
detector, we adopt the edge sensitivity analysis technique 
in [1]. The technique is used to generate edge orientation 
contour plots as displacement of the true edge position 
from the point of application of the detector is increased. 

Orientation θ  was sampled at 5  intervals over the range 

450 ≤≤ θ , so that consistency of performance over a 
range of actual edge angles can be assessed.  Figure 4 

illustrates the variation in detected edge orientation θ  in 
relation to edge displacement ρ  for Prewitt, 5×5 Canny 

(C5), LLG3 and LLG5 respectively.  The label on each 
contour shows the actual edge orientation and the units for 
ρ  are pixels. 
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(a) Prewitt θ  Contours 

 
(b) C5 θ  Contours 
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(c) LLG3 θ  Contours 
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(d) LLG5 θ  Contours 

Figure 4. Detected edge orientation vs displacement for operators 
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The contours illustrate that the product operators, LLG3 
and LLG5, are comparable with the well-known Canny 
and Prewitt operators, with LLG5 having improved 
performance over LLG3.  Visual comparison for the edge 
detection operators is provided in Figure 5 using the same 
image as used in Figure 3 for corner detection.  Figures 
5(c) and 5(d) demonstrate that the edge maps generated 
using the product operators contain less noise than those 
generated using Canny and Prewitt. 

 
(a) Prewitt, T = 20 

 
(b) Canny, T(L) = 11, T(H)=21 

 
(c) LLG3, T = 11 

 
(d) LLG5, T=10 

Figure 5.  Edge maps for each edge detection algorithm 

4. SUMMARY 

Feature detection plays an important role in computer 
vision, particularly with respect to real-time vision. We 
have presented a new approach, the Linear2 Gaussian 
product operator, for concurrent corner and edge detection, 
that does not require a computationally expensive post-
processing stage of applying a Gaussian smoothing kernel 
for corner detection. We have demonstrated the reduced 
computation time achieved using this method for corner 
detection. We have also assessed performance of the 
Linear2 Gaussian product operator with respect to edge 
detection and illustrated that it is comparable to other well-
known techniques. Future work will entail a thorough 
analysis to determine if the Linear2 Gaussian product 
operator’s performance is sufficiently accurate for feature 
detection when used in robot vision tasks such as 
navigation and localisation. 
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