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ABSTRACT

In this paper, we present an application of stable marriages
algorithms, applied to level-line junctions, for obstacle de-
tection. The method is implemented on our PiCar stereovi-
sion based system, an intelligent vehicle. The performance of
the method is tested for precision and safety in real situations
and compared with two other methods based on dynamic pro-
gramming and correlation.

Index Terms— Obstacle detection, stereovision, stable
marriage, level-line junctions,

1. INTRODUCTION

Obstacle detection is a key function to be implemented on an
intelligent vehicle. Many methods with different approaches
have been proposed. The technique implemented on our PiCar
system [1] is based on stereo analysis. Obstacles are identi-
fied from the disparity field. In that case, the matching step
plays the important role for precision and detectability. The
two matching methods− Le Coat’s [2] and Birchfield’s [3]−
already implemented on PiCar rely respectively on dynamic
programming and correlation. In this paper, we present an al-
ternative combinatorial optimization from a paradigm called
”stable marriages”. A sparse disparity field is obtained by ap-
plying the suitable algorithm to level-line junctions.
The paper is organized as follows. First, we introduce the

PiCar vision system. Then, our method to marrying level-line
junctions, is presented. Finally, performances are compared
between methods by experimenting in real situations.

2. PICAR VISION SYSTEM

The PiCar vision system builds on several components imple-
mented within the real time, stamped, and data flow RTMaps
environment. The end image processing result is figured as
a Bird View with superimposed obstacle detection and road
way tracking. The view is an inverse road plane perspective
reconstructed through bilinear image interpolation. That en-
ables to represent the vehicle and its exo-system in a non pro-
jective rectified world. All computations are performed over

proprioceptive (gyros, odometers ...) and exteroceptive (cam-
eras, GPS ...) sensors.
Most of the image processing layer is using the 1.0 OpenCV

library. The stereoscopic disparity map addressed in this pa-
per assumes epipolar rectified images [4]. It is restricted to a
Region Of Interest (ROI) bounded up and down by the hori-
zon and a 3 meters blind zone and covering the relevant road
way. Disparities lay thus inside a trapezoidal region delimit-
ing the forward vehicle’s trajectory.
The driving direction is determined with no need of any

line mark, thanks to IPM [5] (Inverse Perspective Mapping)
and a Hough transform that makes vote for the road-border
transition. Obstacles are detected both longitudinally and lat-
erally in the U and V-disparity dual projection spaces [6],
given the slope of cameras wrt. the ground plane and the im-
age height of the horizon. A calibration measure is required
to associate the height in the images, related by an hyperbolic
relation to longitudinal distances in the real world.

3. MARRYING LEVEL-LINE JONCTIONS

This section presents firstly the EFLAM model for level-line
junction extraction. Then, ”stable marriages” algorithms for
junction matching are described.

3.1. The EFLAM model

Let I(p) be the image intensity at pixel p. Image I can be de-
composed into level sets. Boundaries of level sets are called
level lines. Level lines obtained from the level sets can over-
lay but never cross. Level-line flow is locally defined as the
overlaying level lines forλ from u to v : Fu,v = {Lλ�λ ∈]u, v]},
with flow extension: E = v − u. Level-line junction is then
a point between any four pixels in the image where at least
two level line flows merge or split. To extract robust level line
junctions, the EFLAM model is applied.
The EFLAM model [7] stems from the assumption that

level-line junctions are points of interest. Let p̃ be a junction
point located between four neighbor pixels p̃i . Then, given a
radius ρ, the FLAM’s areaRi according to pixel p̃i is defined
as :

Ri = [ pj ∈ N(p̃i)�Cpj
= 1 ] (1)
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Where Cpj
=

{
1 if |I(p̃i)− I(pj)| ≤ E

2

0 else .

N(p̃i) denotes the set of pixels within the circular mask
(with radius ρ) around the pixel p̃i and E is a (preset) thresh-
old. The figure 1(a) sketches the EFLAMmodel with FLAM’s
areas around a Y junction.

Fig. 1. (a) EFLAM model, (b) Primitive

For each areaRi, the average image intensityMp̃
i
is de-

termined as :

Mp̃
i
=

∑
[ pj∈N(p̃

i
)� Cp

j
=1 ] I(pj)

Nm
(2)

Nm is the number of pixels in the circular mask. Then,
the maximum level line flow F ∗p̃ (and its extension flow E)
passing through the junction point p̃ can be defined according
to its neighbors as:

F ∗p̃ = FL
p̃,M+−

p̃ ,M++
p̃
∪ FM

p̃,M−+
p̃ ,M+−

p̃
∪ FR

p̃,M−−
p̃ ,M−+

p̃
. ,

with transparent notations andM++
p̃ ≥ M+−

p̃ ≥ M−+
p̃ ≥

M−−
p̃ . The flow F ∗p̃ is defined as the entering flow towards

the junction point while the others are flows out. Note that
since the order of intensities around a junction point is fixed
(increasing or decreasing order), by refering to F ∗

p̃ all flows
can be determined automatically.
Thus, the junction variation Vp̃ is defined as the sum of

squared variations of regions − if the difference between the
maximum and minimum intensities is equal or higher than E
−, if not the variation is null :

Vp̃ =
{ ∑

i∈[1,4] V2
Ri if M++

p̃ −M−−
p̃ ≥ E

0 else
(3)

Where the variation of each area VRi is defined by:

VRi =
{ Nm

2 −Np̃
i

if Nm

16 ≤ Np̃
i
< Nm

2

0 else
(4)

Where Np̃
i

=
∑

[p
j
∈N(p̃i)]

Cpj
. The junction extraction

process is designed as a recursive automaton. When it stops,
extracted junctions are then coded into primitives.

−→
PY =

[
p
−→
S ∗

−→
S L −→

S R θL θR
]

(5)

Where
−→
S =

[
p θ L C(nl, nr)

]
. Then, the candi-

dates have to be prepared for matching. Each primitive will
create a preference list containing its potential mates (prim-
itives of the other image to be possibly paired). The prefer-
ences are set based on the junction similarity.

3.2. Stable marriages algorithms

After preselectingmatching candidates by creating the prefer-
ence list for each primitive, an algorithm of stables marriages
suitably designed for such problems will be used for pairing.
The stable marriage problemwas first studied by Gale and

Shapley [8]. In this problem, two finite sub-sets M and W
of two respective populations, say men and women, have to
match. Assume n is the number of elements, M = {mi}n

1

and W = {wj}n
1 . Each element x creates its preference list

l(x) i.e. it sorts all members of the opposite sex from most to
less preferred. A matchingM is a one to one correspondence
between men and women. If (m, w) is a matched pair inM
, we noteM(m) = w andM(w) = m and ρm is the rank
ofm in the list of w (resp. ρw the rank of w in the list ofm).
Manm and woman w form a blocking pair if (m, w) is not in
M butm prefers w toM(m) and w prefersm toM(w).
Note that (m,M(m)) and (M(w), w) are blocked pairs.

The situationwhere (m, w) is blocking (m,M(m)) and (M(w), w)
is called blocking situation (see figure.2(b)). If there is no
blocking pair, then the marriageM is stable. Gale and Shap-
ley [8]designed an algorithmwith complexityO(n2) that guar-
antees stability. But it is unfair to one half of the population
and it may make every couple unhappy in that men get their
best possible choice and women their worst, or conversely.

(a) (b)

Fig. 2. (a) Marriage table : the pair (x,y), y is the 3 rd choice
of x and x is the 4th choice of y, (b) Blocking situation in a
marriage table.

Themarriage table [9] (see figure.2(a)) is a representation
of the stable marriages problem designed to meet the three
criteria of stability, sex equality and global satisfaction. It is
a table with (n + 1) lines and (n + 1) columns. Lines (resp.
columns) frame the preference orders of men, {1 · · ·p · · ·N ∞}
(resp. women, {1 · · · q · · ·N ∞}). The cell (p, q) contains
pairs (m, w) such that w is the pth choice ofm, andm is the
qth choice of w. Cells can thus contain more than one pair
or none. The cell (p,∞) (resp. (∞, q)) contains the pairs
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(m, w) wherew is the pth choice ofm (respm the qth choice
of w) but m does not exist in her preference list (resp. w is
not in his preference list).
So, the global satisfaction of matching can be defined by

S =
∑

(m,w)∈M(ρm + ρw). Note that a solution with maxi-
mum global satisfaction would get matched pairs around the
origin of the table (bottom-left). Conversely, sex equality
tends to fit the diagonal of the marriage table. It is defined
as E =

∑
(m,w)∈M |ρm − ρw|.

The BZ [10] algorithm consists of scanning the marriage
table cells in order to first maximize both criteria concur-
rently. It scans anti-diagonals forward frommaximum to min-
imum global satisfaction while each one is read in swing-
ing from center to sides meaning maximum to minimum sex
equality. In each cell, pairs are married if both partners are
free. After all cells have been visited, the table is then revis-
ited again to remove the blocking situations: a blocking pair
gets married and corresponding blocked pairs are released.
The process repeats until there is no more blocking situation
(case ”stability”) or the iteration number is greater than the
population size (”instability”).
To recover stability fully, a new direct blocking-pair-removal

procedure was designed and tested. The three criteria are
conjointly satisfied by BZ in 95% cases, requiring a raise
in complexity from O(n2) to O(n3). For the 5% remaining
instances, a careful case analysis is completed leading to four
types of instability, and to the SBZ algorithm [10]. It starts
from the best previous one in terms of stability, BZ, and re-
moves selected blocking pairs depending on their type. While
stability of the matching is then fully supported− the impor-
tant progress from the BZ algorithm − both satisfaction and
equity are increased in 60% to 70% of the processed cases.
However, when satisfaction and equity drop it is in a propor-
tion of about half the BZ score. For stabilizing BZ results
with this procedure, the complexity remains O(n3) in prac-
tice. The SBZ is then used for our junctions matching.

4. EXPERIMENTATION AND COMPARISON

The experiment was carried out in real time on the PiCar ve-
hicle. The test is run in two sequences : other vehicle, and
then cyclist/pedestrian for obstacle. One thus builds varied
situations summarized in the following :
- obstacle is close (resp. obstacle is far): the effective-

ness of the method is then measured by the maximal/minimal
distances from PiCar to the obstacle.
- obstacle leaves the field of view (resp. obstacle enters

the field): the effectiveness is measured by the smallest size
of a detected obstacle in the image.
Morever, one could vary the noise conditions present on

and around the road (by modifying the environment) and test
the robustness with respect to these disturbances.
- the rate of discontinuity in the obstacle detection, whether

caused by the system or the environment, is a funding com-

Vehicle detection, over 12 minutes and 29 seconds
Our method Le Coat Birchfield and al.

(a) 49m70 25m00 15m20
(b) 0,81% 2,29% 3,88%

286 pixels 806 pixels 1364 pixels
(c) 82,77% 66,35% 55,27%
(d) 3-4 4-5 4-5

Cyclist detection, over 5 minutes and 24 seconds
Our method Le Coat Birchfield and al.

(a) 36m00 23m30 20m70
(b) 0,69% 1,33% 1,36%

243 pixels 464 pixels 480 pixels
(c) 91,66% 55,20% 38,75%
(d) 3-4 4-5 4-5

Table 1. Comparasion between methods (a) The maximum
distance from detection (m.) (b) Minimal size of detectable
object (%) on the window of 35133 pixels (c) The rate of
detectability (%) (d) The speed (images per second)

parative data too.
- the speed of the method must be considered because it

can influence all other factors.
Methods’ performances are compared through these ref-

erences. The figures 3 and 4 show ”left” images of the vehi-
cle/cyclist sequences. In each image, the yellow lines defines
a zone in which the obstacle must be detected. This region of
interest is specific to the modality ”obstacle detection on the
road”, in order to reduce the computing time. The blue line
underlines the detected obstacle. The real distance (in meters)
between PiCar and the obstacle, displayed on the top-left im-
age, is computed after identical configuration and calibration
of the camera.
Table 1 outlines comparative numbers between methods.

It is clear by comparison that our method gives encouraging
results − in terms of precision and detection rate, thanks to
the marriage of selected junctions. However, the method is
slower than the others, mainly due to the combinatorics nec-
essary to meet all three conditions of global satisfaction, fair-
ness and stability is not compensated by the reducing junc-
tions extraction process. Note that the latter can be acceler-
ated independently− e.g. run in parallel by zones or pipelined
over more images.

5. CONCLUSION

We presented in this paper a matchingmethod for obstacle de-
tection. The method applies a ”stables marriage” algorithm to
match level-line junctions, extracted according to the EFLAM
model. It is implemented and tested on the PiCar test-bed
to analyze image sequences in real-time. The comparison
was completed with two methods (Le Coat’s and Birchfield’s)
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Fig. 3. Result of vehicle detection by our method

based on dynamic programming and correlation. They were
already implemented on the vehicle and considered satisfac-
tory for low speed range. The results show that our method
brings a significant improvement in terms of precision and
detection rate, but increases the computing time in its current
implementation.
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