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ABSTRACT

Passive imaging polarimetry has emerged as an useful tool
in many remote sensing applications including material clas-
sification, target detection and shape extraction. In this pa-
per we present a method to classify specular objects based on
their material composition from passive polarimetric imagery.
The proposed algorithm is built on an iterative model-based
method to recover the complex index of refraction of a spec-
ular target from multiple polarization measurements. The re-
covered parameters are then used to discriminate between ob-
jects by employing the nearest neighbor rule. The effective-
ness of the proposed method is validated with data collected
in laboratory conditions. Experimental results indicate that
the classification approach is highly effective for distinguish-
ing between various targets of interest. Most significantly, the
proposed classification method is robust to a wide range of
observational geometry.

Index Terms— remote sensing, illumination invariant ob-
ject recognition, passive polarimetry, material classification,
Stokes vector

1. INTRODUCTION

Polarization is a property of light or electromagnetic radi-
ation that conveys information about the orientation of the
transverse electric and magnetic fields. The polarization of
reflected light complements other electromagnetic radiation
attributes such as intensity, frequency, or spectral character-
istics. This makes polarization a useful tool in many remote
sensing applications including material classification [1, 2],
shape extraction [3], target detection and recognition [4].

Material classification and recognition in uncontrolled en-
vironments is an important task in remote sensing applica-
tions such as target recognition, image segmentation and shape
extraction as well as in industrial inspection. The utility of
passive polarimetry for material classification was first demon-
strated by Wolff [1]. He showed it was possible to distinguish
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between metals and dielectrics by recording the polarization
state of specularly reflected light using a passive polarimeter.
His method involves a threshold-based discrimination proce-
dure that relies on the polarization Fresnel ratio [1], the ra-
tio of perpendicular to parallel polarization state components.
More recently, Zallat, Grabbling and Takakura [2] have pro-
posed a clustering-based approach for material classification
using passive polarimetric imagery.

In this paper we present a material classification algorithm
for specular targets in passive polarimetric imagery that is ro-
bust to illumination conditions. This method uses an iterative
model-based approach [5] to estimate the complex index of
refraction of specular targets from multiple polarization mea-
surements. The extracted index of refraction thus forms a fea-
ture vector to which we apply the well known nearest neigh-
bor algorithm [6] for classification. The proposed method is
applicable to a wide class of objects that are of interest in re-
mote sensing applications unlike the method of [1] which is
applicable only to purely specular objects. In particular, the
proposed approach enables us to distinguish between metals
like copper and aluminum as well as painted surfaces.

2. PROBLEM DESCRIPTION

Fig. 1 illustrates the assumed observational geometry. The
objective here is to first recover the complex index of refrac-
tion of the object from multiple polarization measurements
which is then used to classify targets. θi1 and θi2 denote
the incident zenith angle with respect to the surface normal
z̃ corresponding to two different positions of the illumination
source. θr is the view angle or the reflected zenith angle with
respect to the surface normal z̃, θsc1 and θsc2 are the angles
between the source and the camera corresponding to the two
different locations of the source. Furthermore, it is assumed
that the source is unpolarized and that the camera is fixed and
is in the plane of incidence.

The object is also assumed to be planar and to have a
rough surface which is modeled as a collection of microfacets,
a model referred to as the microfacet model in literature [7].
This model does not account for volumetric scattering; thus,
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Fig. 1. Geometry assumed for the index of refraction estima-
tion.

the optical scattering is assumed to be caused entirely by spec-
ular scattering.

3. POLARIMETRIC BIDIRECTIONAL
REFLECTANCE DISTRIBUTION FUNCTION

The BRDF characterizes optical scattering from surface re-
flections and is given by

f(θi, φi, θr, φr, λ) =
dLr(θr, φr)
dE(θi, φi)

sr−1 (1)

where Lr is the radiance leaving the surface with units watts
per square meter per steradian W

m2−sr , E is the irradiance in-

cident on the surface with units watts per square meter W
m2 .

This results in the BRDF having units of inverse steradians
sr−1. Most materials have azimuthal or rotational symmetry
about the surface normal. Hence the azimuthal angle can be
expressed as a difference between φr and φi, φ = φr − φi,
which reduces the degrees of freedom by one. In addition,
we assume that the polarimetric measurements are made in
the visible region of the spectrum which allows us to drop the
argument λ. Thus, the BRDF is seen to be a function of three
variables and is denoted by f(θi, θr, φ).

The polarimetric BRDF (pBRDF) is a generalization of
the scalar BRDF that also models polarization as well. The
pBRDF can be formally written as

dLr(θr, φr) = F(θi, θr, φr − φi)dE(θi, φi) (2)

where F is the pBRDF Mueller matrix, Lr is the reflected
Stokes vector and E is the incident Stokes vector.

In this paper, we utilize the pBRDF model proposed by
Priest and Meier [7]. This model can characterize the specu-
lar component of scattering for a wide variety of target mate-
rials, for example aluminum and paints [8], that are of interest

in remote sensing applications. We present the pBRDF equa-
tions necessary for our work in the next section and refer the
interested reader to [7] for additional details.

3.1. Polarimetric BRDF for the microfacet model

The microfacet model assumes that a rough surface is com-
posed of a collection of microfacets. Each individual micro-
facet is assumed to be a specular reflector obeying Fresnel’s
equations [8]. Furthermore, the volumetric scattering is as-
sumed to be completely depolarizing. Thus, the optical scat-
tering is caused only by surface or specular scattering. With
these assumptions, the expression for the pBRDF Mueller
matrix is given by [7]

fjl(θi, θr, φr − φi) =
mjl(θi, θr, φr − φi)

8πσ2 cos4(θ)

exp
[
− tan2(θ)

2σ2

]
cos(θr) cos(θi)

(3)
where fjl denotes the element in the j th row and lth column
of the pBRDF Mueller matrix F, mjl denotes the element in
the jth row and lth column of the Fresnel reflectance Mueller
matrix M, θ is the angle of orientation of the microfacets rel-
ative to the mean surface normal and σ describes the surface
roughness. The angle of orientation of the microfacets rela-
tive to the mean surface normal is given by

θ = arccos
(

cos(θi) + cos(θr)
2 cos(β)

)
(4)

where

cos(2β) = cos(θi)cos(θr) + sin(θi)sin(θr)cos(φr − φi)
(5)

The model given by (3) has three parameters namely n, k and
σ where n and k are the real and imaginary parts of the in-
dex of refraction while σ is the surface roughness parameter.
For our work, we assume that the amount of circular polariza-
tion in the reflected signal is insignificant, which is consistent
with the general understanding of most naturally illuminated
surfaces [8]. This assumption reduces F and M to 3 × 3 ma-
trices. Explicit expressions for all the elements of the Fresnel
reflectance matrix M are provided by Priest and Meier [7].

3.2. The microfacet pBRDF for scattering in the plane of
incidence

The polarimetricBRDF equation simplifies in the case of scat-
tering in the plane of incidence where φr −φi = 180◦. In this
case the Fresnel reflectance Mueller matrix M is given by

M =

⎛⎝ m00 m10 0
m10 m00 0
0 0 m22

⎞⎠ (6)

where we have dropped the arguments for the individual ele-
ments of M for the sake of convenience. The pBRDF Mueller
matrix F is therefore defined by (3) and (6).
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4. DERIVING THE DEGREE OF POLARIZATION
FROM THE MIRCROFACET PBRDF MODEL

In this section an expression for the degree of polarization
(DOP) is derived for the case of scattering in the plane of
incidence. The illumination source is assumed to be unpo-
larized which is the case in passive remote sensing systems.
Thus the input Stokes vector is given by [1 0 0]t where t
denotes the vector transposition operator. In the following we
drop the arguments for the individual elements f jl for conve-
nience. Assuming that the zenith angles for the source and the
camera are θi and θr respectively, the observed Stokes vector
at the camera can be shown to be [5]⎛⎝ sr

0

sr
1

sr
2

⎞⎠ =

⎛⎝ f00

f10

0

⎞⎠ (7)

where the superscript r denotes the Stokes vector components
for reflected light. The degree of polarization of the observed
Stokes vector is given by

P =
m10

m00
(8)

which follows from (3).
The degree of polairzation given by (8) can be further sim-

plified as shown in [5] to

P (n, k, β) =
2A sin2(β) cos(β)

A2 cos2(β) + sin4(β) + B2 cos2(β)
(9)

where n and k are the real and imaginary parts of the complex
index of refraction and β is given by

β =
θi + θr

2
(10)

or

β =
θsc

2
(11)

from fig. 1. The quantities A and B are defined as:

A =

√√
C + D

2
(12)

and

B =

√√
C − D

2
(13)

where

C = 4n2k2 + D2 (14)

and

D = n2 − k2 − sin2(β). (15)

5. COMPLEX INDEX OF REFRACTION
ESTIMATION

The objective is to recover the index of refraction from mul-
tiple degree of polarization measurements. We observe from
(9) that the DOP is a function of n, k, θi and θr. If θsc is
known, then it follows from (9) that the DOP is a function of
the index of refraction. The assumption that the phase angle
θsc is known at the camera is not unreasonable in many re-
mote sensing applications given that the imaging platform is
likely to have a GPS on board and is thus able estimate the
position of the illumination source, for example the Sun, rela-
tive to its own position with high accuracy. Thus, the complex
index of refraction can be estimated by using (9) by making
multiple DOP measurements with the source at different posi-
tions. By collecting multiple measurements we have a system
of nonlinear equations given by

Pj (n, k) =
2Aj sin2(βj) cos(βj)

A2
j cos2(βj) + sin4(βj) + B2

j cos2(βj)
(16)

where j ∈ {1, 2, · · ·T }. Assuming T ≥ 3, it is easy to see
that the (16) corresponds to an overdetermined system of non-
linear equations. Thus, the system can be recast as a nonlinear
least squares problem, which is solved using the well known
Levenberg-Marquardt method as described in [5].

6. MATERIAL CLASSIFICATION

Target objects are classified into different categories based on
their extracted index of refraction. The index of refraction is
a fundamental parameter that describes a material and is thus
naturally suited for material classification. In this paper, we
use the well known nearest neighbor method [6] with the Eu-
clidean distance metric for classification. This method clas-
sifies a test vector by assigning it to the class associated with
the nearest prototype in the training set.

7. EXPERIMENTAL RESULTS

The proposed classification method is validated by using data
collected under laboratory conditions. The polarization mea-
surements are collected with a passive imagining polarimeter
developed by the Electro-Optics Research Lab (EORL) [9] at
New Mexico State University. The EORL polarimeter con-
sists of a linear polarizer mounted in a rotation stage, a spec-
tral filter (center wavelength of 650nm and a bandwidth of 80
nm for the results shown here) and a scientific-grade camera.
A tungsten filament light source provides the illumination in
our experiments. The Stokes vector images are acquired by
taking several images of a scene with the polarizer at a differ-
ent orientation for each measurement. The interested reader
is referred to [9] for additional details regarding the EORL
polarimeter.
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Table 1. Experimental results for the training set. The view
angle is 60◦. n, k denote the reference index of refraction val-
ues obtained from [8, 10] while n̂ and k̂ denote the estimates.

Material Angle of n k n̂ k̂
Incidence (◦)

Green paint 40-80 1.39 0.34 1.47 0.47
Aluminum 35-80 1.24 6.60 1.64 4.56

Copper 35-70 0.4 2.95 0.54 3.19

Table 2. Experimental results for the test aluminum sample.
The angle of incidence was varied from 35◦ to 80◦.

View Angle n̂ k̂ Classification
(◦) result
60 1.37 3.97 Aluminum
50 1.60 4.34 Aluminum

A Styrofoam piece coated with flat green paint, a piece of
roughened copper and a piece of roughened aluminum were
considered as the reference objects while a second piece of
roughened aluminum was used as the test object. The de-
gree of polarization (DOP) values needed for estimation were
computed by averaging at least 100 by 100 pixels in the Stokes
vector images. Table 1 shows the estimates obtained for the
training set. The measurements for the training set were made
with the view angle fixed at 60◦. The index of refraction val-
ues published in literature [8, 10] have also been included in
table 1 for comparison. We note here that for the copper tar-
get, the iterative algorithm converged to the desired solution
for a narrower range of the angles of incidence compared to
aluminum and green paint. This may be because the copper
target is more specular than the aluminum or green paint tar-
get. Consequently, the specular lobe of the copper piece must
be narrower than that of the other targets considered in this
study.

Table 2 lists the estimates for the test sample as well as
the classification results. Table 2 also shows that the classifi-
cation method assigns the test sample to the appropriate class
(aluminum) correctly in both the cases considered in our ex-
periments. More importantly, it is seen that the index of re-
fraction can be a useful feature vector for performing material
classification that is robust to illumination conditions.

8. CONCLUSION

In this paper we present a method to classify specular objects
based on their material composition from passive polarimet-
ric imagery. The proposed algorithm is built on an iterative
model-based method to recover the complex index of refrac-

tion of a specular target from multiple passive polarization
measurements. The extracted parameters are used as inputs
for the nearest neighbor method to discriminate between ob-
jects. Experimental results with laboratory data indicate that
the classification approach is highly effective for distinguish-
ing between various targets of interest. The proposed clas-
sification method is robust to a wide range of illumination
conditions considered in our experiments. Current and future
work involved considering more observational geometries for
experimental data collection as well as other targets of interest
in our experiments.
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