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ABSTRACT
Compressed sensing or compressive sampling (CS) has been
receiving a lot of interest as a promising method for signal
recovery and sampling. CS problems can be cast as convex
problems, and then solved by several standard methods such
as interior-point methods, at least for small and medium size
problems. In this paper we describe a specialized interior-
point method for solving CS problems that uses a precondi-
tioned conjugate gradient method to compute the search step.
The method can efficiently solve large CS problems, by ex-
ploiting fast algorithms for the signal transforms used. The
method is demonstrated with a medical resonance imaging
(MRI) example.

Index Terms— compressed sensing, compressive sam-
pling, �1 regularization, interior-pointmethods, preconditioned
conjugate gradients.

1. INTRODUCTION

1.1. Compressed sensing

Let z be an unknown vector in R
n. Suppose that we havem

noisy linear measurements of z of the form

yi = 〈φi, z〉+ vi, i = 1, . . . , m,

where 〈·, ·〉 denotes the usual inner product, v ∈ R
m is the

noise, and φi ∈ R
n are known signals. Standard reconstruc-

tion methods require at least n samples. Suppose we know a
priori that z is compressible or has a sparse representation in
a transform domain, described byW ∈ R

n×n (after expand-
ing the real and imaginary parts if necessary). In this case, if
the measurement vectors are well chosen, then the number of
measurements m can be dramatically smaller than n usually
considered necessary.
Compressed sensing [1] or compressive sampling [2] ex-

ploits the sparsity or compressibility in the transform domain
by solving a problem of the form

minimize ‖Φz − y‖22 + λ‖Wz‖1 (1)

where the variable is z ∈ R
n and ‖x‖1 =

∑
i
|xi| denotes

the �1 norm. Here, Φ = [φ1 · · ·φm]
T
∈ R

m×n is called
the compressed sensing matrix, λ > 0 is the regularization
parameter, andW is called the sparsifying transform.

1.2. Solution methods

When W is invertible, the CS problem (1) can be reformu-
lated as the �1-regularized least squares problem (LSP)

minimize ‖Ax− y‖22 + λ‖x‖1 (2)

where the variable is x ∈ R
n and the problem data or pa-

rameters are A = ΦW−1 ∈ R
m×n and y ∈ R

m. The
�1-regularized problem (2) can be transformed to a convex
quadratic program (QP), with linear inequality constraints,

minimize ‖Ax− y‖2 +
∑n

i=1 λui

subject to −ui ≤ xi ≤ ui, i = 1, . . . , n,
(3)

where the variables are x ∈ R
n and u ∈ R

n.
The data matrix A is typically fully dense, and so small

and medium sized problems can be solved by standard con-
vex optimizationmethods such as interior-pointmethods. The
QP (3) that arises in compressed sensing applications has an
important difference from general dense QPs: there are a fast
method for multiplying a vector by A and a fast method for
multiplying a vector by AT , based on fast algorithms for the
sparsifying transform and its inverse transform. A special-
ized interior-point method that exploits such algorithms may
scale to large problems [3]. An example is l1-magic [4],
which uses the conjugate gradient (CG) method to compute
the search step.
Specialized computational methods for problems of the

form (2) include path-following methods and variants [5, 6,
7]. When the optimal solution of (2) is extremely sparse, path-
following methods can be very fast. Path-following methods
tend to be slow, as the number of nonzeros at the optimal solu-
tion increases. Other recently developed computational meth-
ods for �1-regularized LSPs include coordinate-wise descent
methods [8], bound optimization methods [9], sequential sub-
space optimization methods [10]), iterated shrinkagemethods
[11, 12], and gradient projection algorithms [13]. Some of
these methods can handle very large problems with modest
accuracy.
The main goal of this paper is to describe a specialized

interior-point method for solving the QP (3). The method
uses a preconditioned conjugate gradient (PCG) method to
compute the search step and therefore can exploit fast algo-
rithms for the sparsifying transform and its inverse transform.
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The specialized method is far more efficient than (primal-
dual) interior-point methods that use direct or CG methods to
compute the search step. Compared with first-order methods
such as coordinate descent methods, the specialized method is
comparable in solving large problems with modest accuracy,
but is able to solve them with high accuracy with relatively
small additional computational cost. The method is demon-
strated with an MRI example.

2. PRELIMINARIES

We describe some basic ingredients necessary for the interior-
point method described in Section 3.

2.1. Dual problem

To derive a Lagrange dual of (2), we first write it in the equiv-
alent form

minimize zT z +
∑n

i=1 λ|xi|
subject to z = Ax − y,

where the variables are x ∈ R
n and z ∈ R

m. We associate
dual variables νi ∈ R, i = 1, . . . , m with the equality con-
straints zi = (Ax − y)i. The Lagrange dual of (2) can be
written as

maximize G(ν) = −(1/4)νT ν − νT y
subject to ‖AT ν‖∞ ≤ λ.

(4)

The dual problem (4) is a convex optimization problem with
a variable ν ∈ R

m. We say that ν ∈ R
m is dual feasible if it

satisfies the constraints in the dual problem (4). (See [14, §4]
for more on Lagrange duality.)
Any dual feasible point ν gives a lower bound on the op-

timal value p� of the primal problem (2), i.e., G(ν) ≤ p�,
which is called weak duality. Furthermore, the optimal value
of the primal and dual are equal since the primal problem (3)
satisfies Slater’s condition, which is called strong duality [14].

2.2. Suboptimality bound

We are able to derive an easily computed bound on the sub-
optimality of x, by constructing a dual feasible point ν from
an arbitrary x. The dual point

ν = 2s(Ax− y), (5)

with the scaling constant s = min
{
1, λ/‖AT ν‖∞

}
, is dual

feasible. Therefore G(ν) is a lower bound on the optimal
value of (2). The difference between the primal objective
value and the associated lower boundG(ν) is called the dual-
ity gap and denoted η:

η = ‖Ax− y‖22 +

n∑
i=1

λ|xi| −G(ν). (6)

The duality gap is always nonnegative by weak duality, and is
zero at the optimal point.

3. AN INTERIOR-POINT METHOD

We start by defining the logarithmic barrier for the bound con-
straints −ui ≤ xi ≤ ui in (3),

Φ(x, u) = −

n∑
i=1

log(ui + xi)−

n∑
i=1

log(ui − xi)

with domain dom Φ = {(x, u) ∈ R
n×R

n | |xi| < ui, i =
1, . . . , n}. The central path consists of the unique minimizer
of the convex function

φt(x, u) = t‖Ax− y‖22 + t

n∑
i=1

λui + Φ(x, u),

as the parameter t varies from 0 to∞.
In the primal interior-point method, we compute a se-

quence of points on the central path, for an increasing se-
quence of values of t, starting from the previously computed
central point. In the primal barrier method, Newton’s method
is used to minimize φt(x, u), i.e., the search direction is com-
puted as the exact solution to the Newton system

∇2φt(x, u)

[
Δx
Δu

]
= −∇φt(x, u). (7)

(The reader is referred to [14, Chap.11] for more on the primal
barrier method.)
For a large �1-regularized LSP, solving the Newton sys-

tem exactly is not computationally practical. In the method
described below, the search direction is computed as an ap-
proximate solution to the Newton system, using a truncated
Newton method.
In the primal barrier method, the parameter t is held con-

stant until φt is (approximately) minimized, i.e., ‖∇φt‖2 is
small; when this occurs, t is increased by a factor typically
between 2 and 50. The method described below attempts to
update the parameter t at each iteration, using the observation
made above that we can cheaply compute a dual feasible point
and associated duality gap for any x.

TRUNCATED NEWTON INTERIOR-POINT METHOD.

given relative tolerance εrel > 0, α ∈ (0, 1/2), β ∈ (0, 1)

Initialize. t := 1/λ, x := 0, u := 1 = (1, . . . , 1) ∈ R
n.

repeat
1. Compute the search direction (Δx, Δu)
as an approximate solution to the Newton system (7).

2. Backtracking line search.
Find the smallest integer k ≥ 0 that satisfies
φt(x + βkΔx, u + βkΔu)

≤ φt(x, u) + αβk∇φt(x, u)T

[
Δx
Δu

]
.

3. Update . (x, u) := (x, u) + βk(Δx, Δu).
4. Construct dual feasible point ν from (5).
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5. Evaluate duality gap η from (6).
6. quit if η/G(ν) ≤ εrel.
7. Update t.

As a stopping criterion, the method uses the duality gap
divided by the dual objective value. By weak duality, the ratio
is an upper bound on the relative suboptimality.
The update rule we propose is

t :=

{
max

{
μ min{t̂, t}, t

}
, s ≥ smin

t, s < smin

where t̂ = 2n/η, and s = βk is the step length chosen in
the line search. Here μ > 1 and smin ∈ (0, 1] are algorithm
parameters. The choice of μ = 2 and smin = 0.5 appears
to give good performance for a wide range of problems. This
rule has been used in solving l1-regularized logistic regression
problems in [15]. See [15] for an informal justification of
convergence of the interior-point method based on this update
rule (with exact search directions).
We compute the search direction approximately, applying

the PCG method [16, §6.6] to the Newton system (7). It uses
a (symmetric positive definite) preconditioner P ∈ R

2n×2n

that approximates the Hessian of φt(x, u),

∇2φt(x, u) = t∇2‖Ax− y‖2 +∇2Φ(x, u) ∈ R
2n×2n.

The preconditioner approximates the first term with its diag-
onal entries, while retaining the second term:

P = diag(t∇2‖Ax− y‖2) +∇2Φ(x, u) ∈ R
2n×2n.

(Here diag(S) is the diagonal matrix obtained by setting the
off-diagonal entries of the matrix S to zero.) The cost of com-
puting the diagonal entries can be amortized over all interior-
point iterations since we need to compute them only once.
The computational effort of each iteration of the PCG al-

gorithm is dominated by one matrix-vector product of the
form Hp with the Hessian H = ∇2φt(x, u) and one solve
step of the form P−1r with the preconditioner P . The cost
of computing Hp is cheap, since we can use fast algorithms
for the transforms Φ and W (e.g., fast discrete wavelet and
Fourier transforms). The cost of computing P−1rk is O(n)
flops.
The PCG algorithm has two parameters: the initial pointx0

and relative tolerance εpcg. For the initial point in the PCG al-
gorithm, we use the previous search direction. The PCG rela-
tive tolerance parameter εpcg has to be carefully chosen to ob-
tain good efficiency in the interior-point method. We change
the relative tolerance adaptively as εpcg = min {0.1, ξη/‖g‖2},
where η is the duality gap at the current iterate and ξ is an al-
gorithm parameter. (The choice of ξ = 0.01 appears to work
well for a wide range of problems.) Thus, we solve the New-
ton system with low accuracy at early iterations, and solve it
more accurately as the duality gap decreases.

4. APPLICATION TO SPARSE MRI

In this section we demonstrate the interior-point method de-
scribed in Section 3 with real Magnetic Resonance Imaging
(MRI) data, using algorithm parameters α = 0.01, β = 0.5,
smin = 0.5, μ = 2, ξ = 0.01, and εrel = 0.05. The regular-
ization parameter is taken as λ = 0.01. The method was
implemented in Matlab, and run on a 3.2GHz Pentium IV
under Linux. (The Matlab implementation is available from
http://www.stanford.edu/∼boyd/l1 ls/.)
In MRI, samples are collected directly in the spatial fre-

quency domain of the object of interest. The scan time inMRI
is often proportional to the number of Fourier coefficients re-
quired for reconstruction. Using compressed sensing, one can
significantly reduce the number of acquisition samples and
hence the scan time. This approach is referred to as sparse or
compressed sensing MRI [17].
We scanned the brain of a healthy volunteer. We obtained

205 out of 512 possible parallel lines in the spatial frequency
of the image. The lines were chosen randomly with higher
density sampling at low frequency achieving a 2.5 scan-time
reduction factor, as illustrated in the left panel of Fig. 1. The
compressed sensing matrix Φ in (1) is therefore a matrix ob-
tained by randomly removing many rows of the discrete two-
dimensional Fourier transform (DFT) matrix, called a random
Fourier ensemble. Brain images have a sparse representation
in the wavelet domain. In the example shown, we use the
Daubechies 4 wavelet transform as the sparsifying transform
W in (1).
We compared the sparse MRI method with a linear re-

construction method, which sets unobserved Fourier coeffi-
cients to zero and then performs the inverse Fourier transform.
Fig. 1 shows the two reconstruction results. The linear recon-
struction suffers from incoherent noise-like streaking artifacts
(pointed by the arrow) due to undersampling, whereas the ar-
tifacts are much less noticeable in the compressed sensing re-
construction.
The QP for compressed sensing reconstruction has around

4 × 5122 ≈ 106 variables. (Here one half are the real and
imaginarywavelet coefficients and the other half are new vari-
ables added in transforming the CS problem into a QP.) The
run time of the Matlab implementation of our interior-point
method was around 3 minutes, and the total number of PCG
steps required over all interior-point iterations was 137. MOSEK
[18] could not handle the QP, since forming the Hessian H
(let alone computing the search direction) is prohibitively ex-
pensive for direct methods.

5. EXTENSIONS

Although not described here in detail, the interior-pointmethod
described in Section 3 can be readily extended to other prob-
lems that have a similar form. For instance, it can be readily
extended to CS problems where the �1 norm of a complex
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Figure 1: Brain image reconstruction results. Left. Collected partial Fourier coefficients (in white). Middle. Linear recon-
struction. Right. Compressed sensing reconstruction.

vector is the sum of the absolute values of the complex ele-
ments.
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