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ABSTRACT

Palmprint is a unique and reliable biometric characteristic
with high usability. With the increasing demand of
automatic palmprint authentication systems, the
development of accurate and robust palmprint verification
algorithms has been attracting a lot of interests. The relative
translation, rotation and distortion between two palmprint
images will introduce much error in palmprint matching.
However, an accurate registration of palmprint images is too 
time-consuming. In this paper, we propose a modified
complex wavelet structural similarity index (CW-SSIM) to
compute the matching score and hence identify the input
palmprint. Since CW-SSIM is robust to translation, small
rotation and distortion, a fast rough alignment of palmprint
images is sufficient. CW-SSIM is also insensitive to
luminance and contrast changes. Our experimental results
show that the proposed scheme outperforms the state-of-the-
art methods by achieving a higher genuine acceptance rate 
and a lower false acceptance rate simultaneously.

Index Terms — Biometrics, palmprint, complex wavelet
transform, similarity measurement

1. INTRODUCTION 

Automatic authentication using biometric characteristics is 
playing a more and more important role in security.
Biometric approaches recognize the identity of a person
with certain physiological characteristics, including the 
extensively studied fingerprints, facial features, iris, speech, 
hand geometry, etc. In the past several years, a new 
biometric technique, palmprint recognition, has been 
proposed [1-5]. The palmprint recognition system has many
merits. For example, it is reliable, low cost and user-
friendly.

Similar to fingerprint and iris, palmprint is one of the
most reliable means in personal identification because of its 
stability and uniqueness. Different to fingerprint and iris,
palmprint-based identifier is more user-friendly. Referring
to Fig. 1 (a), in the palmprint identification system
developed by the Biometrics Research Centre, The Hong 
Kong Polytechnic Univ., a low-cost CCD camera is used to

capture the palmprint image at a very low resolution (75
dpi). Fig. 1(b) shows a typical palmprint image captured by
the system.

(a)                                              (b) 

Figure 1. (a) The palmprint image acquisition system. (b) A 
typical palmprint image.

The main types of features in the palmprint are principal
lines, wrinkles and creases. There are usually three principal
lines in a palmprint: the heart line, the head line, and the life
line. These lines vary little over time, and their shapes and
locations on the palm are the most important physiological
features for individual identification. Wrinkles are much
thinner than the principal lines and much more irregular.
Creases are detailed textures, like the ridges in a fingerprint, 
all over the palmprint. Creases can only be captured using
high resolution cameras. With the low-resolution palmprint
image, the principal lines and thick wrinkles will be
exploited for verification. Many palmprint verification
schemes [2-5] have been proposed, including Gabor 
filtering, wavelet, etc.

One important issue in palmprint verification schemes is 
an accurate registration of the input palmprint. To reduce 
the error caused by palm rotation and translation, a peg is
employed in the palmprint system (referring to Fig. 1) to fix
the hand and a ROI (region of interest) preprocessing step
(referring to section 3.1) is used to further adjust the
palmprint. This operation roughly aligns the palmprint
image and it does not reduce the effect of palmprint
distortion. An accurate registration of the input palmprint
with the database, however, is unrealistic because it is too 
time-consuming.

The objective of this paper is to find a high accuracy 
(high genuine acceptance rate and low false acceptance rate) 
palmprint verification scheme without accurate image
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registration. To this end, a recently proposed image
similarity metric, complex wavelet structural similarity
index (CW-SSIM) [6], is employed and modified to
compare the input palmprint with the one in the database.
CW-SSIM transforms the pair of images to be compared
into complex wavelet domain and then uses a sliding
window to compute the local similarity. Though CW-SSIM
index was originally proposed to measure the image quality, 
it has good properties which are desired for palmprint
matching. For instance, it is insensitive to spatial translation,
small rotation and distortion. It is also robust to luminance
and contrast change. All these properties make it a good
candidate to work as a palmprint verification metric.

The rest of the paper is as follows. Section 2 briefly
introduces the CW-SSIM index. Section 3 describes the
proposed palmprint verification scheme using CW-SSIM.
Section 4 presents the experimental results and Section 5 
gives the conclusion.

2. THE COMPLEX WAVELET STRUCTURAL 
SIMILARITY INDEX

In [6], Wang et al proposed a complex wavelet structural
similarity (CW-SSIM) index for evaluating image quality.
CW-SSIM was developed to overcome the drawbacks of
spatial domain structural similarity (SSIM) index previously
proposed by Wang et al [7]. SSIM index is highly sensitive
to geometrical distortions such as translation, scaling,
rotation, or other misalignments. The use of the complex
wavelet transform is motivated in two ways. First, Fourier
phase carries more important information about image
structures than Fourier magnitude and wavelet phase has 
been successfully applied in image processing applications
[9]. Second, small translations, scalings and rotations lead to
consistent, describable phase changes in the complex
wavelet domain.

Consider a mother wavelet , where 
is the center frequency of the modulated band-pass filter and
g(u) is a slowly varying and symmetric function. The family
of wavelets are dilated and translated versions of :
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where scale factor  and translation factorRs Rp . The 
continuous complex wavelet transform of a given real signal
x(u) is [8]:
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where )(X  and )(G are the Fourier transforms of x(u)
and g(u), respectively. The discrete wavelet coefficients are 
sampled versions of the continuous wavelet transform.

To compute the CW-SSIM index of two images, we first
compute the complex wavelet transform of them. Denote by

},2,1|{ , Nic ixxc and the
complex wavelet coefficients of two images. The CW-SSIM
index of
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Here denotes the complex conjugate of c and K is a small
positive constant. It has been shown that the CW-SSIM
index is insensitive to luminance and contrast changes as 
well as small translation, rotation and distortion.

*c

3. PALMPRINT VERIFICATION WITH MODIFIED 
CW-SSIM INDEX

This section describes the proposed palmprint verification
algorithm using a modified CW-SSIM index as a metric.
We first extract from the original palmprint images a region
of interest (ROI). This process can also roughly align the
palmprint images. The complex wavelet transform will be
performed on the ROIs of the palmprint images.

3.1. Determination of ROI

(a)                                          (b) 
Figure 2. (a) The determination of ROI. (b) A cropped ROI
image of the palmprint image in (a).

Once the palmprint is captured, it is processed to get the
region of interest (ROI), which is a 128*128 area, for 
feature extraction and identity recognition. This process 
will also reduce, to some extent, the effect of rotation and
translation of the hand. Please refer to [2] for the detailed
ROI determination process. Figure 2 illustrates a ROI image
cropped from the original palmprint image.

3.2. Modified local CW-SSIM index

After determining the ROI of the palmprint, we apply the
complex wavelet transform to it. In implementing the
complex wavelet transform, we use a complex version of
the “steerable pyramid” transform [10], which is a type of 
redundant wavelet transform that avoids aliasing in
subbands. We decompose the ROI image into 3 scales with
16 orientations at each scale. To reduce the storage space 
and computation load in matching, only the wavelet
coefficients at the 3rd scale are used for verification. In Fig.
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3, we show two palmprint images from two persons. The 
complex wavelet transform images of them in one
orientation at scale 3 are shown in Fig. 4 with real and 
imaginary parts being displayed separately.

(a)                   (b) 
Figure 3. Two palmprint ROI images from two persons. 

(a)                   (b) 
Figure 4. The complex wavelet coefficients of the two images in
Fig. 3. Left is the real part and right is the imaginary part.

We can rewrite (3) as 
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The first component in the right hand of (4) is completely
determined by the magnitudes of the coefficients. The
maximum value 1 is achieved if and only if |||| ,, iyix cc for
all values of i. The second component is fully determined by
the consistency of phase changes between xc  and . It 
achieves the maximum value 1 when the phase difference
between and is a constant for i. The second 
component is a better measure of image structural similarity
than the first one because the structural information of local 
image features is mainly contained in the relative phase
patterns of the wavelet coefficients and a constant phase
shift of all coefficients does not change the structure of local 
image features. With these considerations, we only use the
second component of (4) to verify the similarity between
palmprints. The modified CW-SSIM is defined as 
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In calculating the local similarity of two wavelet
coefficient images, we move a sliding window w , whose 
size is l l, across each subband. At position ( , , we have 
a set of wavelet coefficients within the window and denote
it as . For two sets of wavelet

coefficients  and from two palmprints, the

local CW-SSIM at ( ,  is . The
overall similarity of the two palmprints, denoted by

)n m
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s , can 
be estimated as the average of all local CW-SSIM
across all orientations. If the similarity index

( , )S n m
s  of two

palmprint images is higher than a preset threshold, we say
they are from the same person. 

(a)          (b) 
Figure 5. The normalized gray-scale similarity map between
the palmprint images in Fig. 3. (a) is the result by using the 
first component in (4) and (b) is the result by using the second
component in (4).

To further illustrate why we choose measurement (5) but 
not (4), let’s compute the similarities of the two palmprint
images in Fig.3 by using the first and second components in
(4) respectively. The left and right images in Fig.5 are the 
outputs using the first and second components in (4)
respectively. We can clearly see that the left similarity map
is much brighter than the right one. This means that two
different palmprint images are hard to be discriminated by
the first components in (4), which is verified by our
experiments too.

4. EXPERIMENTS

Our test palmprint database contains 600 grayscale images
collected from 100 different palms, six samples each palm.
Those palmprint images were collected in two sessions with
an average time interval of 69 days. 

To obtain the verification accuracy of our method, each 
palmprint image is matched with all the other palmprint
images in the database. A match is counted as correct if the
two palmprint images are from the same palm; otherwise,
the match is counted as incorrect. The total number of
matches is 600 599/2=179,700, and among them there are 
600 5/2=1,500 correct matchings. In Fig. 6, we plot the
curve of Genuine and Impostor similarity distribution for
the proposed method.

The competitive coding scheme in [3], one of the most
successful palmprint verification schemes, is used for
comparison with the proposed CW-SSIM scheme. Fig. 7 
plots the Receiver Operating Characteristic (ROC) curves 
(the genuine acceptance rate against the false acceptance 
rate for all possible operating points) for the two methods.
From Fig. 7 we can see that the proposed method can
operate at genuine acceptance rate of 99.2% while the 
corresponding false acceptance rate is 1 10-5. The equal 
error rate (EER) of competitive coding is 0.1988, while that
of our method is 0.0684, only one-third of the former.
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Figure 6. Similarity Distribution.
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Figure 7. ROC of CW-SSIM & Competitive Coding.

Figure 8. Two palmprints from the same person. The similarity
between the two images is 0.7129 by using CW-SSIM while it is 
only 0.6092 by utilizing Competitive Coding Scheme.

One of the advantages of CW-SSIM index is its
robustness to image distortions. Fig. 8 shows an example.
The two palmprints are from the same person and the
second one has some distortion. The distortion was not fully
reduced in the ROI determination process and it makes the
competitive coding scheme fail. The proposed CW-SSIM
scheme, however, is robust to this distortion and it correctly
identifies that the two palmprints are from the same person.

5. CONCLUSION

We proposed a palmprint similarity measurement by using
complex wavelet transform. The image local structure 

information is hidden in the relative phase patterns of the
complex wavelet coefficients and a constant phase shift of 
all coefficients does not change the structure of local image
features. Therefore, the proposed CW-SSIM metric is robust
to translation, small rotation and distortion. Our experiments
validated that it achieves higher genuine acceptance rate and
lower false acceptance rate than the competitive coding 
method, which is one of the best palmprint verification
schemes. One drawback of the proposed scheme is its
relatively big memory requirement to store the wavelet
coefficients. How to find a more compact representation of 
the information hidden in complex wavelet coefficients to
reduce the storage space requirement is the main task of our 
future work. 
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